Fabrication of polyglutamic acid-based sensor for electrochemical determination of a phenicol antibiotic in water environment

Nguyen Thi Kim Ngan, Vu Thi Thu Ha, Dang Van Thanh, Nguyen Tra My, Thi-Hai Yen Pham
Author affiliations

Authors

  • Nguyen Thi Kim Ngan Graduate University of Science and Technology, Viet Nam Academy of Science and Technology, Hoang Quoc Viet street, Cau Giay, Hanoi, Vietnam. Faculty of Chemistry, TNU-University of Sciences, Tan Thinh, Thai Nguyen city, Thainguyen, Vietnam
  • Vu Thi Thu Ha Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet street, Cau Giay district, Ha Noi, Viet Nam
  • Dang Van Thanh Faculty of Basic Sciences, TNU- University of Medicine and Pharmacy, Tan Thinh, Thai Nguyen city, Thainguyen, Vietnam
  • Nguyen Tra My Faculty of Environmental Engineering, Hanoi University of Civil Engineering (HUCE), Giai Phong street, Hai Ba Trung district, Hanoi, Vietnam
  • Thi-Hai Yen Pham Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet street, Cau Giay district, Ha Noi, Viet nam

DOI:

https://doi.org/10.15625/2525-2518/16865

Keywords:

chloramphenicol determination, graphite electrode, electropolymerization, polyglutamic acid

Abstract

In this study, a graphite electrode (GrE) modified with polyglutamic acid was used to determine chloramphenicol (CAP), a phenicol antibiotic, in a water environment using adsorptive stripping linear sweep voltammetry. The pGA modification process involved electropolymerization via cyclic voltammetry, resulting in a significantly enlarged electrochemical active area of the pGA/GrE interface (1.5 times greater than that of the unmodified GrE). The highest CAP signal was obtained on the electrode fabricated by scanning 50 cycles in the potential range of -1.2 V to +2.0 V. The CAP signal recorded on the pGA/GrE electrode was nine times higher than that on the GrE, which was due to the larger electrochemical active area of the pGA/GrE and its good adsorption capacity with CAP. Analysis conditions including the pH of electrolyte and accumulation time, were optimized. Under optimal conditions, the calibration curve was built with two linear regions in the concentration ranges of 0.5-20 µmol L-1 (R2 = 0.987) and 20-100 µmol L-1 (R2 = 0.996), and the detection limit for CAP was 0.28 µmol L-1.

Downloads

Download data is not yet available.

References

C.X. Low, L.T.H. Tan, N.S.A. Mutalib, P. Pusparajah, B.H. Goh, K.G. Chan, V. Letchumanan, L.H. Lee, Unveiling the impact of antibiotics and alternative methods for animal husbandry: A review, Antibiotics. 10 (2021) 1–17. https://doi.org/10.3390/antibiotics10050578. DOI: https://doi.org/10.3390/antibiotics10050578

V. Economou, P. Gousia, Agriculture and food animals as a source of antimicrobial-resistant bacteria, Infect. Drug Resist. 8 (2015) 49–61. https://doi.org/10.2147/IDR.S55778. DOI: https://doi.org/10.2147/IDR.S55778

C. Kirchhelle, Pharming animals: a global history of antibiotics in food production (1935–2017), Palgrave Commun. 4 (2018). https://doi.org/10.1057/s41599-018-0152-2. DOI: https://doi.org/10.1057/s41599-018-0152-2

K. Kor, K. Zarei, Electrochemical determination of chloramphenicol on glassy carbon electrode modified with multi-walled carbon nanotube-cetyltrimethylammonium bromide-poly(diphenylamine), J. Electroanal. Chem. 733 (2014) 39–46. https://doi.org/10.1016/j.jelechem.2014.09.013. DOI: https://doi.org/10.1016/j.jelechem.2014.09.013

J. Borowiec, R. Wang, L. Zhu, J. Zhang, Synthesis of nitrogen-doped graphene nanosheets decorated with gold nanoparticles as an improved sensor for electrochemical determination of chloramphenicol, Electrochim. Acta. 99 (2013) 138–144. https://doi.org/10.1016/j.electacta.2013.03.092. DOI: https://doi.org/10.1016/j.electacta.2013.03.092

P. Talebizadehsardari, Z. Aramesh-Boroujeni, M.M. Foroughi, A. Eyvazian, S. Jahani, H.R. Faramarzpour, F. Borhani, M. Ghazanfarabadi, M. Shabani, A.H. Nazari, Synthesis of carnation-like Ho3+/Co3O4 nanoflowers as a modifier for electrochemical determination of chloramphenicol in eye drop, Microchem. J. 159 (2020) 105535. https://doi.org/10.1016/j.microc.2020.105535. DOI: https://doi.org/10.1016/j.microc.2020.105535

R. Karthik, M. Govindasamy, S.M. Chen, V. Mani, B.S. Lou, R. Devasenathipathy, Y.S. Hou, A. Elangovan, Green synthesized gold nanoparticles decorated graphene oxide for sensitive determination of chloramphenicol in milk, powdered milk, honey and eye drops, J. Colloid Interface Sci. 475 (2016) 46–56. https://doi.org/10.1016/j.jcis.2016.04.044. DOI: https://doi.org/10.1016/j.jcis.2016.04.044

R. Karthik, J. Vinoth Kumar, S.M. Chen, C. Karuppiah, Y.H. Cheng, V. Muthuraj, A Study of Electrocatalytic and Photocatalytic Activity of Cerium Molybdate Nanocubes Decorated Graphene Oxide for the Sensing and Degradation of Antibiotic Drug Chloramphenicol, ACS Appl. Mater. Interfaces. 9 (2017) 6547–6559. https://doi.org/10.1021/acsami.6b14242. DOI: https://doi.org/10.1021/acsami.6b14242

H.J. Balbi, Chloramphenicol: A review, Pediatr. Rev. 25 (2004) 284–288. https://doi.org/10.1542/pir.25-8-284. DOI: https://doi.org/10.1542/pir.25-8-284

S. Rizzo, M. Russo, M. Labra, L. Campone, L. Rastrelli, Determination of chloramphenicol in honey using salting-out assisted liquid-liquid extraction coupled with liquid chromatography-tandem mass spectrometry and validation according to 2002/657 european commission decision, Molecules. 25 (2020) 1–13. https://doi.org/10.3390/molecules25153481. DOI: https://doi.org/10.3390/molecules25153481

T. Nagata, H. Oka, Detection of residual chloramphenicol, florfenicol, and thiamphenicol in yellowtail fish muscles by capillary gas chromatography-mass spectrometry, J. Agric. Food Chem. 44 (1996) 1280–1284. https://doi.org/10.1021/jf950343u. DOI: https://doi.org/10.1021/jf950343u

I. Karube, Optical detection of chloramphenicol using molecularly imprinted polymers, Anal. Chem. 69 (1997) 2017–2021. DOI: https://doi.org/10.1021/ac960983b

Q.J. Zhang, T. Peng, D.D. Chen, J. Xie, X. Wang, G.M. Wang, C.M. Nie, Determination of chloramphenicol residues in aquatic products using immunoaffinity column cleanup and high performance liquid chromatography with ultraviolet detection, J. AOAC Int. 96 (2013) 897–901. https://doi.org/10.5740/jaoacint.12-277. DOI: https://doi.org/10.5740/jaoacint.12-277

S. Meenakshi, S. Jancy Sophia, K. Pandian, High surface graphene nanoflakes as sensitive sensing platform for simultaneous electrochemical detection of metronidazole and chloramphenicol, Mater. Sci. Eng. C. 90 (2018) 407–419. https://doi.org/10.1016/j.msec.2018.04.064. DOI: https://doi.org/10.1016/j.msec.2018.04.064

G. Jaysiva, S. Manavalan, S.M. Chen, P. Veerakumar, M. Keerthi, H.S. Tu, MoN Nanorod/Sulfur-Doped Graphitic Carbon Nitride for Electrochemical Determination of Chloramphenicol, ACS Sustain. Chem. Eng. 8 (2020) 11088–11098. https://doi.org/10.1021/acssuschemeng.0c00502. DOI: https://doi.org/10.1021/acssuschemeng.0c00502

X. Zhang, Y.C. Zhang, J.W. Zhang, A highly selective electrochemical sensor for chloramphenicol based on three-dimensional reduced graphene oxide architectures, Talanta. 161 (2016) 567–573. https://doi.org/10.1016/j.talanta.2016.09.013. DOI: https://doi.org/10.1016/j.talanta.2016.09.013

N. Manjula, S.M. Chen, Synthesis of highly electroactive nanoflowers like manganesetin oxide and electroanalytical application for chloramphenicol determination in milk and honey samples, J. Electroanal. Chem. 880 (2021). https://doi.org/10.1016/j.jelechem.2020.114914. DOI: https://doi.org/10.1016/j.jelechem.2020.114914

T. Yang, H. Chen, T. Ge, J. Wang, W. Li, K. Jiao, Highly sensitive determination of chloramphenicol based on thin-layered MoS2/polyaniline nanocomposite, Talanta. 144 (2015) 1324–1328. https://doi.org/10.1016/j.talanta.2015.08.004. DOI: https://doi.org/10.1016/j.talanta.2015.08.004

Y. L. Zhao, Q. Chen, J. Lv, M. M. Xu, X. Zhang, and J. R. Li, Specific sensing of antibiotics with metal-organic frameworks based dual sensor system, Nano Res., 15 (2022). https://doi.org/10.1007/s12274-022-4306-6. DOI: https://doi.org/10.1007/s12274-022-4306-6

Tran Si Thanh, Nguyen Thi Thanh Tu, Dinh Quang Khieu, et al., Electrochemical determination of chloramphenicol on glassy carbon electrode modified with rice husks derived activated carbon, ECS J. Solid State Sci. Technol. 10 (2021) 117001. https://doi.org/10.1149/2162-8777/ac372c. DOI: https://doi.org/10.1149/2162-8777/ac372c

Van Ho, M.H., Vo, T.K., Dinh, Q.K. et al. Three-Dimensional Hierarchical Flower-Like Fe3O4 Porous Microstructure Decorated with Au Nanoparticles: Synthesis and Application for Sensitive Electrochemical Detection of Chloramphenicol. J. Electron. Mater. 51 (2022) 5795–5807. https://doi.org/10.1007/s11664-022-09824-z. DOI: https://doi.org/10.1007/s11664-022-09824-z

D.P. Santos, M.V.B. Zanoni, M.F. Bergamini, A.M. Chiorcea-Paquim, V.C. Diculescu, A.M. Oliveira Brett, Poly(glutamic acid) nanofibre modified glassy carbon electrode: Characterization by atomic force microscopy, voltammetry and electrochemical impedance, Electrochim. Acta. 53 (2008) 3991–4000. https://doi.org/10.1016/j.electacta.2007.08.072. DOI: https://doi.org/10.1016/j.electacta.2007.08.072

W. Yi, Z. He, J. Fei, X. He, Sensitive electrochemical sensor based on poly(l-glutamic acid)/graphene oxide composite material for simultaneous detection of heavy metal ions, RSC Adv. 9 (2019) 17325–17334. https://doi.org/10.1039/c9ra01891c. DOI: https://doi.org/10.1039/C9RA01891C

P.S. Ganesh, B.E.K. Swamy, Simultaneous electroanalysis of norepinephrine, ascorbic acid and uric acid using poly(glutamic acid) modified carbon paste electrode, J. Electroanal. Chem. 752 (2015) 17–24. https://doi.org/10.1016/j.jelechem.2015.06.002. DOI: https://doi.org/10.1016/j.jelechem.2015.06.002

X. Liu, L. Luo, Y. Ding, D. Ye, Poly-glutamic acid modified carbon nanotube-doped carbon paste electrode for sensitive detection of L-tryptophan, Bioelectrochemistry. 82 (2011) 38–45. https://doi.org/10.1016/j.bioelechem.2011.05.001. DOI: https://doi.org/10.1016/j.bioelechem.2011.05.001

S.H. Lee, J.H. Lee, V.K. Tran, E. Ko, C.H. Park, W.S. Chung, G.H. Seong, Determination of acetaminophen using functional paper-based electrochemical devices, Sensors Actuators, B Chem. 232 (2016) 514–522. https://doi.org/10.1016/j.snb.2016.03.169. DOI: https://doi.org/10.1016/j.snb.2016.03.169

C. Chen, X. Lv, W. Lei, Y. Wu, S. Feng, Y. Ding, J. Lv, Q. Hao, S.M. Chen, Amoxicillin on polyglutamic acid composite three-dimensional graphene modified electrode: Reaction mechanism of amoxicillin insights by computational simulations, Anal. Chim. Acta. 1073 (2019) 22–29. https://doi.org/10.1016/j.aca.2019.04.052. DOI: https://doi.org/10.1016/j.aca.2019.04.052

J. J. Feminus, R. Manikandan, S. S. Narayanan, P. N. Deepa, Determination of gallic acid using poly(glutamic acid): graphene modified electrode, J. Chem. Sci. 131 (2019). https://doi.org/10.1007/s12039-018-1587-0. DOI: https://doi.org/10.1007/s12039-018-1587-0

M. D. Foggia, P. Taddei, A. Torreggiani, M. Dettin, A. Tinti, Self-assembling peptides for biomedical applications: IR and raman spectroscopiesfor the study of secondary structure, Proteomics Research Journal 2 (2012) 231-272. https://doi.org/10.18596/jotcsa.728165 DOI: https://doi.org/10.18596/jotcsa.728165

J. Kumirska, M. Czerwicka, Z. Kaczyński, A. Bychowska, K. Brzozowski, J. Thöming, P. Stepnowski, Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan, Mar. Drugs 8 (2010),1567-1636. https://doi.org/10.3390/md8051567. DOI: https://doi.org/10.3390/md8051567

Y. Lin, K. Liu, C. Liu, L. Yin, Q. Kang, L. Li, B. Li, Electrochemical sensing of bisphenol A based on polyglutamic acid/amino-functionalised carbon nanotubes nanocomposite, Electrochimica Acta, 133 (2014), 492-500. https://doi.org/10.1016/j.electacta.2014.04.095 . DOI: https://doi.org/10.1016/j.electacta.2014.04.095

H. Zhai, Z. Liang, Z. Chen, H. Wang, Z. Liu, Z. Su, Q. Zhou, Simultaneous detection of metronidazole and chloramphenicol by differential pulse stripping voltammetry using a silver nanoparticles/sulfonate functionalized graphene modified glassy carbon electrode, Electrochim. Acta. 171 (2015) 105–113. https://doi.org/10.1016/j.electacta.2015.03.140. DOI: https://doi.org/10.1016/j.electacta.2015.03.140

W. Yi, Z. Li, C. Dong, H.W. Li, J. Li, Electrochemical detection of chloramphenicol using palladium nanoparticles decorated reduced graphene oxide, Microchem. J. 148 (2019) 774–783. https://doi.org/10.1016/j.microc.2019.05.049. DOI: https://doi.org/10.1016/j.microc.2019.05.049

N. Yalikun, X. Mamat, Y. Li, X. Hu, T. Wågberg, Y. Dong, G. Hu, Synthesis of an iron-nitrogen co-doped ordered mesoporous carbon-silicon nanocomposite as an enhanced electrochemical sensor for sensitive and selective determination of chloramphenicol, Colloids Surfaces B Biointerfaces. 172 (2018) 98–104. https://doi.org/10.1016/j.colsurfb.2018.08.011. DOI: https://doi.org/10.1016/j.colsurfb.2018.08.011

D. Xi, J. Wang, X. Guo, A simple and sensitive electrochemical sensor for chloramphenicol detection in pharmaceutical samples, Biosci. Rep. (2020).

N.T. Anh, N.X. Dinh, T.N. Pham, L.K. Vinh, L.M. Tung, A.T. Le, Enhancing the chloramphenicol sensing performance of Cu-MoS2 nanocomposite-based electrochemical nanosensors: Roles of phase composition and copper loading amount, RSC Adv. 11 (2021) 30544–30559. https://doi.org/10.1039/d1ra06100c. DOI: https://doi.org/10.1039/D1RA06100C

N.A. Shad, S.Z. Bajwa, N. Amin, A. Taj, S. Hameed, Y. Khan, Z. Dai, C. Cao, W.S. Khan, Solution growth of 1D zinc tungstate (ZnWO4) nanowires; design, morphology, and electrochemical sensor fabrication for selective detection of chloramphenicol, J. Hazard. Mater. 367 (2019) 205–214. https://doi.org/10.1016/j.jhazmat.2018.12.072. DOI: https://doi.org/10.1016/j.jhazmat.2018.12.072

R. Yang, J. Zhao, M. Chen, T. Yang, S. Luo, K. Jiao, Electrocatalytic determination of chloramphenicol based on molybdenum disulfide nanosheets and self-doped polyaniline, Talanta. 131 (2015) 619–623. https://doi.org/10.1016/j.talanta.2014.08.035. DOI: https://doi.org/10.1016/j.talanta.2014.08.035

Downloads

Published

05-04-2023

How to Cite

[1]
T. K. N. Nguyen, T. T. H. Vu, V. T. Dang, T. M. Nguyen, and T.-H. Y. Pham, “Fabrication of polyglutamic acid-based sensor for electrochemical determination of a phenicol antibiotic in water environment ”, Vietnam J. Sci. Technol., vol. 61, no. 3, pp. 441–453, Apr. 2023.

Issue

Section

Environment