Green synthesis of graphene quantum dots from rice flour

Tran Thi Bich Quyen, Huynh Thi Thuy Phuong, Ngo Nguyen Tra My, Doan Van Hong Thien, Luong Huynh Vu Thanh, Lan Nguyen Phuong Tran
Author affiliations

Authors

  • Tran Thi Bich Quyen Faculty of Chemical Engineering, College of Engineering, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho city, Viet Nam https://orcid.org/0000-0002-9304-5544
  • Huynh Thi Thuy Phuong Faculty of Chemical Engineering, College of Engineering, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho city, Viet Nam
  • Ngo Nguyen Tra My Faculty of Chemical Engineering, College of Engineering, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho city, Viet Nam
  • Doan Van Hong Thien Faculty of Chemical Engineering, College of Engineering, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho city, Viet Nam
  • Luong Huynh Vu Thanh Faculty of Chemical Engineering, College of Engineering, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho city, Viet Nam
  • Lan Nguyen Phuong Tran Faculty of Mechanical Engineering, College of Engineering, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho city, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/16847

Keywords:

graphene quantum dots (GQDs), photocatalyst, hydrothermal method, microwave irradiation method, rice flour, Classification numbers: 1.3.3, 2.5.1, 2.1.1.

Abstract

Graphene Quantum Dots (GQDs) were successfully synthesized by a green and eco-friendly synthetic method using abundant and naturally available raw materials from rice flour. This study suggested and compared two aggressive approaches to fabricate GQDs, which are hydrothermal method at 170 °C for 8 h and microwave irradiation method at 900 W with a short reaction time of 30 min. The results showed that the hydrothermal method produced GQDs with better nanoparticle size and properties than the microwave irradiation method. Furthermore, the products were only GQDs, water and carbide precipitate, thus avoiding complicated post-processing steps. The synthesized GQDs were determined for their morphology by Transmission electron microscope (TEM) showing spherical nanoparticles with an average size of ~5-7 nm and ~10-14 nm for hydrothermal and microwave irradiation methods, respectively. Besides, these GQDs were also analyzed for their characterizations, morphologies and compositions by UV-vis, XRD and FTIR. Thanks to their low cytotoxicity, good optical stability, and excellent photo-luminescence property, GQDs have become novel nanostructured materials in many application fields from energy to biomedicine and environment such as sensors, bio-imaging, drug carriers, and solar cells.

Downloads

Download data is not yet available.

References

Girit C. O., Meyer J. C., Erni R., Rossell M. D., Kisielowski C., Yang L., Park C. H.,Crommie M. F., Cohen M. L. and Louie S. G., et al. - Graphene at the edge:stability and dynamics, Sci. 323 (5922) (2009) 1705-1708. https://doi.org/10.1126/science.1166999. DOI: https://doi.org/10.1126/science.1166999

Ritter K. A., Lyding J. W. and Mater N. - The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons, Nat. Mater. 8 (3) (2009) 235-242. https://doi.org/10.1038/nmat2378. DOI: https://doi.org/10.1038/nmat2378

Shen J., Zhu Y., Yang X., Li. C. and Commun C. - Graphenequantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices, ChemComm. 48 (31) (2012) 3686-3699. https://doi.org/10.1002/chin.201229273. DOI: https://doi.org/10.1039/c2cc00110a

Hassan M., Haque E., Reddy K. R., Minett A. I., Chen J. and Gomes V. G. - Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance, Phys. Sci. Math. 6 (20) (2014) 11988–11994. https://doi.org/10.1039/C4NR02365J. DOI: https://doi.org/10.1039/C4NR02365J

Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V. and Firsov A. A. - Electric field effect in atomically thin carbon films, Sci. 306 (5696) (2004) 666-669. https://www.science.org/doi/10.1126/science.1102896. DOI: https://doi.org/10.1126/science.1102896

Geim A. K. - Graphene: status and prospects, Sci. 324 (5934) (2009) 1530-1534. https://www.science.org/doi/10.1126/science.1158877. DOI: https://doi.org/10.1126/science.1158877

Bolotin K. I., Sikes K. J., Jiang Z., Klimac M., Fudenberga G., Honec J., Kima P. and Stormer H. L. - Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146 (9-10) (2008) 351-355. https://doi.org/10.1016/j.ssc.2008.02.024. DOI: https://doi.org/10.1016/j.ssc.2008.02.024

Lee C., Wei X. and Kysar J. W. - Measurement of the elastic properties and intrinsic strength of monolayergraphene, Sci. 321 (5887) (2008) 385-388. https://doi/10.1126/science.1157996. DOI: https://doi.org/10.1126/science.1157996

Xu X. Z., Zhou J.,Jestin. J., Colombo V. andLubineau. G. - Preparation ofwater-soluble graphenenanoplatelets and highly conductivefilms, Carbon. 124 (2017) 133-141. https://doi.org/10.1016/j.carbon.2017.08.007. DOI: https://doi.org/10.1016/j.carbon.2017.08.007

Du L., Luo X., Zhao F., Zhang J., Peng Y., Tang Y. and Wang Y. - Toward facile broadband highphotoresponse of fullerene based phototransistor from theultraviolet to the near-infrared region, Carbon. 96 (2016) 685–694. https://doi.org/10.1016/j.carbon.2015.10.005. DOI: https://doi.org/10.1016/j.carbon.2015.10.005

Witek A. and Irle S. - Diversity in electronic structure and vibrational properties of fullerene isomers correlates with cage curvature, Carbon. 100 (2016) 484-491. http://dx.doi.org/10.1126/science.1157996. DOI: https://doi.org/10.1016/j.carbon.2016.01.015

Qiu C., Zhang Z., Xiao M.,Yang Y., Zhong D. and Peng L. M. - Scaling carbon nanotube complementary transistors to 5nm gate lengths, Sci. 355 (6322) (2017) 271-276. https://www.science.org/doi/10.1126/science.aaj16. DOI: https://doi.org/10.1126/science.aaj1628

Zhang S.,Kang L.,Wang X.,Tong L. and Yang L. - Arrays of horizontalcarbon nanotubes of controlled chirality grown using designedcatalysts, Nat. 543 (2017) 234-238. https://doi.org/10.1038/nature21051. DOI: https://doi.org/10.1038/nature21051

Liu Y.,Wang S.,Liu H. and Peng L. M. - Carbon nanotube based three-dimensional monolithic optoelectronic integrated system, Nat. Comm. 8 (1) (2017) 1-8. https://doi.org/10.1038/ncomms15649. DOI: https://doi.org/10.1038/ncomms15649

Strano M. S., Lu T. K, Dong J.,Yang D.,Chio L. and Kottadiel V. L. - Single molecule detection of protein efflux from microorganismsusing fluorescent single walled carbon nanotube sensorarrays, Nat. Nanotechnol. 12 (4) (2017) 368-377. https://doi.org/10.1038/nnano.2016.284. DOI: https://doi.org/10.1038/nnano.2016.284

Liu R.,Wu D., Feng X. and Mullen K. - Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology, J. Am. Chem. Soc. 133 (39) (2011) 15221-15223.

https://doi.org/10.1021/ja204953k. DOI: https://doi.org/10.1021/ja204953k

Choi S. H - Unique properties of graphene quantum dots andtheir applications in photonic/electronic devices, J. Phys. D: Appl. Phys. 50 (10) (2011) 103002. http://iopscience.iop.org/0022-3727/50/10/103002. DOI: https://doi.org/10.1088/1361-6463/aa5244

Ma M. J., Hu X. Y. and Zhang C. B. - The optimum parameters to synthesize bright and stable graphene quantum dots by hydrothermal method, J. Mater. Sci. Mater. Electron. 28 (9) (2017) 6493–6497. https://doi.org/10.1007/s10854-017-6337-4.

Tang L.L., JiR., Cao X., Lin J., Jiang H., Li X., Teng K. S., Luk C. M., Zeng S. and Lau S. P., et al. - Deep ultraviolet photoluminescence of water soluble self-passivatedgraphene quantum dots, ACS Nano. 6 (6) (2012) 5102-5110. https://doi.org/10.1021/nn300760g. DOI: https://doi.org/10.1021/nn300760g

Zhuo S., Shao M. and Lee S. T. - Up conversion and down conversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis, ACS Nano. 6 (2) (2012) 1059-1064. https://doi.org/10.1021/nn2040395. DOI: https://doi.org/10.1021/nn2040395

Pedro C., Ignacio G., Luis Y., Zaera R. T., Cabanero G., Grande H. J. and Ruiz V. - Graphene quantum dot membranes as fluorescent sensing platforms for Cr (VI) detection, Carbon. 109 (2016) 658-665. https://doi.org/10.1016/j.carbon.2016.08.038.

Zhu S., Zhang J., Tang S., Qiao C., Wang L., Wang H., Liu X., Li B., Yu W. and Wang X., et al. - Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications, Adv. Funct. Mater. 22 (22) (2012) 4732-4740. https://doi.org/10.1002/adfm.201201499. DOI: https://doi.org/10.1002/adfm.201201499

Zhang M., Bai L, Shang W., Xie W., Ma H., Fu Y, Fang D., Sun H., Fan L. and Han M., et al. - Facile synthesis of water soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells, J. Mater. Chem. 22 (15) (2012) 7461-7467. https://doi.org/10.1039/C2JM16835A. DOI: https://doi.org/10.1039/c2jm16835a

Kuo W. S., Chen H. H., Chen S. Y., Chang C. Y., Chen P. C., Hou Y. I., Shao Y. T., Kao H. F., Hsu C. L. L. and Chen Y. C., et al. - Graphene quantum dots with nitrogen doped content dependence for highly efficient dual modality photodynamic antimicrobial therapy and bioimaging, Biomaterials. 120 (2017) 185-194. https://doi.org/10.1016/j.biomaterials.2016.12.022. DOI: https://doi.org/10.1016/j.biomaterials.2016.12.022

Jiang D., Chen YP. Y., Li N., Li W., Wang Z., Zhu J., Zhang H. and Liu B. - Synthesis of luminescent graphene quantum dots with high quantum yield and their toxicity study, PLoS One. 10 (12) (2015) 1–15. https://doi.org/10.1371/journal.pone.0144906. DOI: https://doi.org/10.1371/journal.pone.0144906

Lin L. and Zhang S. - Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes, ChemComm. 48 (82) (2012) 10177-10179.https://doi.org/10.1039/C2CC35559K. DOI: https://doi.org/10.1039/c2cc35559k

Kumar G. S., Thupakula U., Sarkar P. K. and Acharya S. - Easy extraction of water soluble graphene quantum dots for light emitting diodes, RSC Adv. 5 (35) (2015) 27711-27716. https://doi.org/10.1039/C5RA90055G. DOI: https://doi.org/10.1039/C5RA01399B

Weifeng C., Guo L., Weimin H., Dejiang L., Shaona C. and Zhongxu D. - Synthesis and applications ofgraphenequantumdots: a review, Nanotechnol. Rev. 7 (2) (2018) 157-185. https://doi.org/10.1515/ntrev-2017-0199. DOI: https://doi.org/10.1515/ntrev-2017-0199

Bacon M., Siobhan J. B. and Thomas N. - Graphene quantum dots, Part. Part. Syst. Charact. 31 (4) (2013) 415-428. https://doi.org/10.1002/ppsc.201300252. DOI: https://doi.org/10.1002/ppsc.201300252

Bourlinos A. B., Stassinopoulos A., Anglos D., Zboril R., Karakassides M. and Giannelis E. P. - Surface functionalized carbogenic quantum dots, Small. 4 (4) (2008) 455–458. https://doi.org/10.1002/smll.200700578. DOI: https://doi.org/10.1002/smll.200700578

Qian Z., Ma J., Shan X., Shao L., Zhou J., Chen J. and Feng H. - Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation, RSC Adv. 3 (34) (2013) 1457-14579. https://doi.org/10.1039/C3RA42066C. DOI: https://doi.org/10.1039/c3ra42066c

Weifeng C., Dejiang L., Li T., Wei X., Tianyuan W., Weimin H., Yulin H., Shaona C., Jianfeng C. and Zhongxu D. - Synthesis of graphenequanum dots from natural polymer starch for cell imaging, Green Chem. 20 (19) (2018) 4438-4442. https://doi.org/10.1039/C8GC02106F. DOI: https://doi.org/10.1039/C8GC02106F

Gan Y.X., Jayatissa A.H., Yu Z., Chen X. and Li M. - Hydrothermal synthesis of nanomaterials, J. Nanomater. 2020 (2020) 1-3.

https://doi.org/10.1155/2020/8917013 DOI: https://doi.org/10.1155/2020/8917013

Dunne P.W., Starkey C.L., Gimeno F.M. and Lester E.H. - The rapid size-and shape-controlled continuous hydrothermal synthesis of metal sulphide nanomaterials, Nanoscale 6 (4) (2014) 2406-2418. doi:10.1039/C3NR05749F. DOI: https://doi.org/10.1039/C3NR05749F

Ma M., Hu X., Zhang C., Deng C. and Wang X. - The optimum parameters to synthesize bright and stable graphene quantum dots by hydrothermal method, J. Mater. Sci. Mater. Electron. 28 (9) (2017) 6493-6497. DOI:10.1007/s10854-017-6337-4. DOI: https://doi.org/10.1007/s10854-017-6337-4

Luo P., Qiu Y., Guan X. and Jiang L. - Regulation of photoluminescence properties of graphene quantum dots via hydrothermal treatment, Phys. Chem. Chem. Phys. 16 (35) (2014) 19011-19016. https://doi.org/10.1039/C4CP02652G. DOI: https://doi.org/10.1039/C4CP02652G

Li L.L., Ji J., Fei R., Wang C.Z., Lu Q., Zhang J.R., Jiang L.P. and Zhu J.J. - A facile microwave avenue to electrochemiluminescent two‐color graphene quantum dots, Adv. Funct. Mater. 22 (14) (2012) 2971-2979. https://doi.org/10.1002/adfm.201200166. DOI: https://doi.org/10.1002/adfm.201200166

Onwudiwe D. C. - Microwave-assisted synthesis of PbS nanostructures, Heliyon 5 (3) (2019) e01413. https://doi.org/10.1016/j.heliyon.2019.e01413. DOI: https://doi.org/10.1016/j.heliyon.2019.e01413

Zhu H.T., Zhang C.Y. and Yin Y.S. - Rapid synthesis of copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave irradiation, J. Cryst. Growth 270 (3-4) (2004) 722-728. DOI: 10.1016/j.jcrysgro.2004.07.008. DOI: https://doi.org/10.1016/j.jcrysgro.2004.07.008

Yan X., Li B., Cui X., Wei Q., Tajima K. and Li L. S. - Independent tuning of the band gap and redoxpotential of graphenequantumdots, J. Phys. Chem. Lett. 2 (10) (2011) 1119-1124. https://doi.org/10.1021/jz200450r. DOI: https://doi.org/10.1021/jz200450r

Behzadi F., Saievar I. E. and Bayat A. - One step synthesis of graphene quantum dots, graphene nanosheets and carbon nanospheres: investigation of photoluminescence properties, Mater. Res. Express. 6 (10) (2019) 105615. https://doi.org/10.1088/2053-1591/ab3dd5. DOI: https://doi.org/10.1088/2053-1591/ab3dd5

Pedro C. M., Ignacio G., Luis Y., Ramon Z. T., German C., Hans G. J. and Virginia R. - Graphene quantum dot membranes as fluorescent sensing platforms for Cr (VI) detection, Carbon. 109 (2016) 658-665. https://doi.org/10.1016/j.carbon.2016.08.038. DOI: https://doi.org/10.1016/j.carbon.2016.08.038

Downloads

Published

17-04-2023

How to Cite

[1]
Q. T. B. Tran, P. T. T. Huynh, M. N. T. Ngo, T. V. H. Doan, T. H. V. Luong, and L. N. P. Tran, “Green synthesis of graphene quantum dots from rice flour”, Vietnam J. Sci. Technol., vol. 61, no. 2, pp. 219–231, Apr. 2023.

Issue

Section

Materials