Green synthesis of graphene quantum dots from rice flour
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/16847Keywords:
graphene quantum dots (GQDs), photocatalyst, hydrothermal method, microwave irradiation method, rice flour, Classification numbers: 1.3.3, 2.5.1, 2.1.1.Abstract
Graphene Quantum Dots (GQDs) were successfully synthesized by a green and eco-friendly synthetic method using abundant and naturally available raw materials from rice flour. This study suggested and compared two aggressive approaches to fabricate GQDs, which are hydrothermal method at 170 °C for 8 h and microwave irradiation method at 900 W with a short reaction time of 30 min. The results showed that the hydrothermal method produced GQDs with better nanoparticle size and properties than the microwave irradiation method. Furthermore, the products were only GQDs, water and carbide precipitate, thus avoiding complicated post-processing steps. The synthesized GQDs were determined for their morphology by Transmission electron microscope (TEM) showing spherical nanoparticles with an average size of ~5-7 nm and ~10-14 nm for hydrothermal and microwave irradiation methods, respectively. Besides, these GQDs were also analyzed for their characterizations, morphologies and compositions by UV-vis, XRD and FTIR. Thanks to their low cytotoxicity, good optical stability, and excellent photo-luminescence property, GQDs have become novel nanostructured materials in many application fields from energy to biomedicine and environment such as sensors, bio-imaging, drug carriers, and solar cells.Downloads
References
Girit C. O., Meyer J. C., Erni R., Rossell M. D., Kisielowski C., Yang L., Park C. H.,Crommie M. F., Cohen M. L. and Louie S. G., et al. - Graphene at the edge:stability and dynamics, Sci. 323 (5922) (2009) 1705-1708. https://doi.org/10.1126/science.1166999. DOI: https://doi.org/10.1126/science.1166999
Ritter K. A., Lyding J. W. and Mater N. - The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons, Nat. Mater. 8 (3) (2009) 235-242. https://doi.org/10.1038/nmat2378. DOI: https://doi.org/10.1038/nmat2378
Shen J., Zhu Y., Yang X., Li. C. and Commun C. - Graphenequantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices, ChemComm. 48 (31) (2012) 3686-3699. https://doi.org/10.1002/chin.201229273. DOI: https://doi.org/10.1039/c2cc00110a
Hassan M., Haque E., Reddy K. R., Minett A. I., Chen J. and Gomes V. G. - Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance, Phys. Sci. Math. 6 (20) (2014) 11988–11994. https://doi.org/10.1039/C4NR02365J. DOI: https://doi.org/10.1039/C4NR02365J
Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V. and Firsov A. A. - Electric field effect in atomically thin carbon films, Sci. 306 (5696) (2004) 666-669. https://www.science.org/doi/10.1126/science.1102896. DOI: https://doi.org/10.1126/science.1102896
Geim A. K. - Graphene: status and prospects, Sci. 324 (5934) (2009) 1530-1534. https://www.science.org/doi/10.1126/science.1158877. DOI: https://doi.org/10.1126/science.1158877
Bolotin K. I., Sikes K. J., Jiang Z., Klimac M., Fudenberga G., Honec J., Kima P. and Stormer H. L. - Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146 (9-10) (2008) 351-355. https://doi.org/10.1016/j.ssc.2008.02.024. DOI: https://doi.org/10.1016/j.ssc.2008.02.024
Lee C., Wei X. and Kysar J. W. - Measurement of the elastic properties and intrinsic strength of monolayergraphene, Sci. 321 (5887) (2008) 385-388. https://doi/10.1126/science.1157996. DOI: https://doi.org/10.1126/science.1157996
Xu X. Z., Zhou J.,Jestin. J., Colombo V. andLubineau. G. - Preparation ofwater-soluble graphenenanoplatelets and highly conductivefilms, Carbon. 124 (2017) 133-141. https://doi.org/10.1016/j.carbon.2017.08.007. DOI: https://doi.org/10.1016/j.carbon.2017.08.007
Du L., Luo X., Zhao F., Zhang J., Peng Y., Tang Y. and Wang Y. - Toward facile broadband highphotoresponse of fullerene based phototransistor from theultraviolet to the near-infrared region, Carbon. 96 (2016) 685–694. https://doi.org/10.1016/j.carbon.2015.10.005. DOI: https://doi.org/10.1016/j.carbon.2015.10.005
Witek A. and Irle S. - Diversity in electronic structure and vibrational properties of fullerene isomers correlates with cage curvature, Carbon. 100 (2016) 484-491. http://dx.doi.org/10.1126/science.1157996. DOI: https://doi.org/10.1016/j.carbon.2016.01.015
Qiu C., Zhang Z., Xiao M.,Yang Y., Zhong D. and Peng L. M. - Scaling carbon nanotube complementary transistors to 5nm gate lengths, Sci. 355 (6322) (2017) 271-276. https://www.science.org/doi/10.1126/science.aaj16. DOI: https://doi.org/10.1126/science.aaj1628
Zhang S.,Kang L.,Wang X.,Tong L. and Yang L. - Arrays of horizontalcarbon nanotubes of controlled chirality grown using designedcatalysts, Nat. 543 (2017) 234-238. https://doi.org/10.1038/nature21051. DOI: https://doi.org/10.1038/nature21051
Liu Y.,Wang S.,Liu H. and Peng L. M. - Carbon nanotube based three-dimensional monolithic optoelectronic integrated system, Nat. Comm. 8 (1) (2017) 1-8. https://doi.org/10.1038/ncomms15649. DOI: https://doi.org/10.1038/ncomms15649
Strano M. S., Lu T. K, Dong J.,Yang D.,Chio L. and Kottadiel V. L. - Single molecule detection of protein efflux from microorganismsusing fluorescent single walled carbon nanotube sensorarrays, Nat. Nanotechnol. 12 (4) (2017) 368-377. https://doi.org/10.1038/nnano.2016.284. DOI: https://doi.org/10.1038/nnano.2016.284
Liu R.,Wu D., Feng X. and Mullen K. - Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology, J. Am. Chem. Soc. 133 (39) (2011) 15221-15223.
https://doi.org/10.1021/ja204953k. DOI: https://doi.org/10.1021/ja204953k
Choi S. H - Unique properties of graphene quantum dots andtheir applications in photonic/electronic devices, J. Phys. D: Appl. Phys. 50 (10) (2011) 103002. http://iopscience.iop.org/0022-3727/50/10/103002. DOI: https://doi.org/10.1088/1361-6463/aa5244
Ma M. J., Hu X. Y. and Zhang C. B. - The optimum parameters to synthesize bright and stable graphene quantum dots by hydrothermal method, J. Mater. Sci. Mater. Electron. 28 (9) (2017) 6493–6497. https://doi.org/10.1007/s10854-017-6337-4.
Tang L.L., JiR., Cao X., Lin J., Jiang H., Li X., Teng K. S., Luk C. M., Zeng S. and Lau S. P., et al. - Deep ultraviolet photoluminescence of water soluble self-passivatedgraphene quantum dots, ACS Nano. 6 (6) (2012) 5102-5110. https://doi.org/10.1021/nn300760g. DOI: https://doi.org/10.1021/nn300760g
Zhuo S., Shao M. and Lee S. T. - Up conversion and down conversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis, ACS Nano. 6 (2) (2012) 1059-1064. https://doi.org/10.1021/nn2040395. DOI: https://doi.org/10.1021/nn2040395
Pedro C., Ignacio G., Luis Y., Zaera R. T., Cabanero G., Grande H. J. and Ruiz V. - Graphene quantum dot membranes as fluorescent sensing platforms for Cr (VI) detection, Carbon. 109 (2016) 658-665. https://doi.org/10.1016/j.carbon.2016.08.038.
Zhu S., Zhang J., Tang S., Qiao C., Wang L., Wang H., Liu X., Li B., Yu W. and Wang X., et al. - Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications, Adv. Funct. Mater. 22 (22) (2012) 4732-4740. https://doi.org/10.1002/adfm.201201499. DOI: https://doi.org/10.1002/adfm.201201499
Zhang M., Bai L, Shang W., Xie W., Ma H., Fu Y, Fang D., Sun H., Fan L. and Han M., et al. - Facile synthesis of water soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells, J. Mater. Chem. 22 (15) (2012) 7461-7467. https://doi.org/10.1039/C2JM16835A. DOI: https://doi.org/10.1039/c2jm16835a
Kuo W. S., Chen H. H., Chen S. Y., Chang C. Y., Chen P. C., Hou Y. I., Shao Y. T., Kao H. F., Hsu C. L. L. and Chen Y. C., et al. - Graphene quantum dots with nitrogen doped content dependence for highly efficient dual modality photodynamic antimicrobial therapy and bioimaging, Biomaterials. 120 (2017) 185-194. https://doi.org/10.1016/j.biomaterials.2016.12.022. DOI: https://doi.org/10.1016/j.biomaterials.2016.12.022
Jiang D., Chen YP. Y., Li N., Li W., Wang Z., Zhu J., Zhang H. and Liu B. - Synthesis of luminescent graphene quantum dots with high quantum yield and their toxicity study, PLoS One. 10 (12) (2015) 1–15. https://doi.org/10.1371/journal.pone.0144906. DOI: https://doi.org/10.1371/journal.pone.0144906
Lin L. and Zhang S. - Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes, ChemComm. 48 (82) (2012) 10177-10179.https://doi.org/10.1039/C2CC35559K. DOI: https://doi.org/10.1039/c2cc35559k
Kumar G. S., Thupakula U., Sarkar P. K. and Acharya S. - Easy extraction of water soluble graphene quantum dots for light emitting diodes, RSC Adv. 5 (35) (2015) 27711-27716. https://doi.org/10.1039/C5RA90055G. DOI: https://doi.org/10.1039/C5RA01399B
Weifeng C., Guo L., Weimin H., Dejiang L., Shaona C. and Zhongxu D. - Synthesis and applications ofgraphenequantumdots: a review, Nanotechnol. Rev. 7 (2) (2018) 157-185. https://doi.org/10.1515/ntrev-2017-0199. DOI: https://doi.org/10.1515/ntrev-2017-0199
Bacon M., Siobhan J. B. and Thomas N. - Graphene quantum dots, Part. Part. Syst. Charact. 31 (4) (2013) 415-428. https://doi.org/10.1002/ppsc.201300252. DOI: https://doi.org/10.1002/ppsc.201300252
Bourlinos A. B., Stassinopoulos A., Anglos D., Zboril R., Karakassides M. and Giannelis E. P. - Surface functionalized carbogenic quantum dots, Small. 4 (4) (2008) 455–458. https://doi.org/10.1002/smll.200700578. DOI: https://doi.org/10.1002/smll.200700578
Qian Z., Ma J., Shan X., Shao L., Zhou J., Chen J. and Feng H. - Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation, RSC Adv. 3 (34) (2013) 1457-14579. https://doi.org/10.1039/C3RA42066C. DOI: https://doi.org/10.1039/c3ra42066c
Weifeng C., Dejiang L., Li T., Wei X., Tianyuan W., Weimin H., Yulin H., Shaona C., Jianfeng C. and Zhongxu D. - Synthesis of graphenequanum dots from natural polymer starch for cell imaging, Green Chem. 20 (19) (2018) 4438-4442. https://doi.org/10.1039/C8GC02106F. DOI: https://doi.org/10.1039/C8GC02106F
Gan Y.X., Jayatissa A.H., Yu Z., Chen X. and Li M. - Hydrothermal synthesis of nanomaterials, J. Nanomater. 2020 (2020) 1-3.
https://doi.org/10.1155/2020/8917013 DOI: https://doi.org/10.1155/2020/8917013
Dunne P.W., Starkey C.L., Gimeno F.M. and Lester E.H. - The rapid size-and shape-controlled continuous hydrothermal synthesis of metal sulphide nanomaterials, Nanoscale 6 (4) (2014) 2406-2418. doi:10.1039/C3NR05749F. DOI: https://doi.org/10.1039/C3NR05749F
Ma M., Hu X., Zhang C., Deng C. and Wang X. - The optimum parameters to synthesize bright and stable graphene quantum dots by hydrothermal method, J. Mater. Sci. Mater. Electron. 28 (9) (2017) 6493-6497. DOI:10.1007/s10854-017-6337-4. DOI: https://doi.org/10.1007/s10854-017-6337-4
Luo P., Qiu Y., Guan X. and Jiang L. - Regulation of photoluminescence properties of graphene quantum dots via hydrothermal treatment, Phys. Chem. Chem. Phys. 16 (35) (2014) 19011-19016. https://doi.org/10.1039/C4CP02652G. DOI: https://doi.org/10.1039/C4CP02652G
Li L.L., Ji J., Fei R., Wang C.Z., Lu Q., Zhang J.R., Jiang L.P. and Zhu J.J. - A facile microwave avenue to electrochemiluminescent two‐color graphene quantum dots, Adv. Funct. Mater. 22 (14) (2012) 2971-2979. https://doi.org/10.1002/adfm.201200166. DOI: https://doi.org/10.1002/adfm.201200166
Onwudiwe D. C. - Microwave-assisted synthesis of PbS nanostructures, Heliyon 5 (3) (2019) e01413. https://doi.org/10.1016/j.heliyon.2019.e01413. DOI: https://doi.org/10.1016/j.heliyon.2019.e01413
Zhu H.T., Zhang C.Y. and Yin Y.S. - Rapid synthesis of copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave irradiation, J. Cryst. Growth 270 (3-4) (2004) 722-728. DOI: 10.1016/j.jcrysgro.2004.07.008. DOI: https://doi.org/10.1016/j.jcrysgro.2004.07.008
Yan X., Li B., Cui X., Wei Q., Tajima K. and Li L. S. - Independent tuning of the band gap and redoxpotential of graphenequantumdots, J. Phys. Chem. Lett. 2 (10) (2011) 1119-1124. https://doi.org/10.1021/jz200450r. DOI: https://doi.org/10.1021/jz200450r
Behzadi F., Saievar I. E. and Bayat A. - One step synthesis of graphene quantum dots, graphene nanosheets and carbon nanospheres: investigation of photoluminescence properties, Mater. Res. Express. 6 (10) (2019) 105615. https://doi.org/10.1088/2053-1591/ab3dd5. DOI: https://doi.org/10.1088/2053-1591/ab3dd5
Pedro C. M., Ignacio G., Luis Y., Ramon Z. T., German C., Hans G. J. and Virginia R. - Graphene quantum dot membranes as fluorescent sensing platforms for Cr (VI) detection, Carbon. 109 (2016) 658-665. https://doi.org/10.1016/j.carbon.2016.08.038. DOI: https://doi.org/10.1016/j.carbon.2016.08.038
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.