Development of novel, simple and low–cost microfluidic platform for supporting 3D dynamic cell culture

Nguyen Thanh Duong Nguyen, Thu Uyen Pham, Tran Dinh Thiet
Author affiliations

Authors

  • Nguyen Thanh Duong Nguyen Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Thu Uyen Pham Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Tran Dinh Thiet High School of Education Sciences, VNU – University of Education, 144 Xuan Thuy, Cau Giay, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/16735

Keywords:

3D cancer spheroid, microfluidics, laser engraving, dynamic cell culture

Abstract

Cell culture models more accurately would be of significant value to the medical field and pharmaceutical industry. To achieve this goal, microfluidic cell culture platforms are created and improved for modeling the native cell microenvironment because they can precisely reconstruct in vivo cellular behavior. In this study, a 3D low-cost microfluidic device is used to compare the difference between the static and dynamic environment in 3D cell culture. Cells were seeded in the microfluidic device, and to produce the fluidic flow, the pump was used with the set speed was 0.045ml/min. In 3D cell culture, the viability of cells was monitored by size growth of the spheroids for 7 days. All systems were designed and optimized without leakage of the medium. In the results, the 3D dynamic condition showed a faster increase in size than in the static condition. Overall, the study was prepared for microfluidic platforms with low-cost and simple settings. Moreover, the usage of 3D microfluidic to mimic in vivo returned favorable results that were expected for drug testing in the future. 

 

Downloads

Download data is not yet available.

References

Arrowsmith J. and Miller P. - Trial watch: phase II and phase III attrition rates 2011-2012, Nature Reviews, Drug Discovery. 12 (8) (2013) 569. doi:10.1038/nrd4090. DOI: https://doi.org/10.1038/nrd4090

Chandrasekaran A., Kalashnikov N., Rayes R., Wang C., Spicer J., and Moraes C - Thermal scribing to prototype plastic microfluidic devices, applied to study the formation of neutrophil extracellular traps, Lab on a Chip. 17 (11) (2017) 2003-2012. doi:10.1039/ C7LC00356K. DOI: https://doi.org/10.1039/C7LC00356K

Ferreira L. P., Gaspar V. M., and Mano J. F. - Design of spherically structured 3D in vitro tumor models - Advances and prospects’, Acta Biomaterialia. 75 (2018) 11-34. doi:10.1016/ j.actbio.2018.05.034. DOI: https://doi.org/10.1016/j.actbio.2018.05.034

Tice R. R., Austin C. P., Kavlock R. J., and Bucher J. R. - Improving the human hazard characterization of chemicals: a Tox21 update, Environ Health Perspect. 121 (7) (2013) 756-765. doi:10.1289/ehp.1205784. DOI: https://doi.org/10.1289/ehp.1205784

Farrell E., Byrne E. M., Fischer J., O'Brien F. J., O'Connell B. C., Prendergast P. J., and Campbell V. A. - A comparison of the osteogenic potential of adult rat mesenchymal stem cells cultured in 2-D and on 3-D collagen glycosaminoglycan scaffolds, Technology and Health Care: Official Journal of the European Society for Engineering and Medicine. 15 (1) (2007) 19-31. DOI: https://doi.org/10.3233/THC-2007-15103

Liu W., Sun M., Lu B., Yan M., Han K., and Wang J. - A microfluidic platform for multi-size 3D tumor culture, monitoring and drug resistance testing, Sensors and Actuators B: Chemical. 292 (2019) 111-120. doi:10.1016/j.snb.2019.04.121. DOI: https://doi.org/10.1016/j.snb.2019.04.121

Antoni D. - Three-dimensional cell culture: a breakthrough in vivo, International Journal of Molecular Sciences. 16 (2015) 5517. DOI: https://doi.org/10.3390/ijms16035517

Kapałczyńska M., Kolenda T., Przybyła W., Zajączkowska M., Teresiak A., Filas V., Ibbs M., Bliźniak R., Łuczewski Ł., and Lamperska K. - 2D and 3D cell cultures - a comparison of different types of cancer cell culture, Arch Med Sci. 14 (4) (2018) 910-919. doi:10.5114/ aoms.2016.63743. DOI: https://doi.org/10.5114/aoms.2016.63743

Duval K. Grover H., Han L. H., Mou Y., Pegoraro A. F., Fredberg J., and Chen - Modeling Physiological Events in 2D vs. 3D Cell Culture, Physiology. 32 (4) (2017) 266-277. doi:10.1152/physiol.00036.2016. DOI: https://doi.org/10.1152/physiol.00036.2016

Stiehler M., Bünger C., Baatrup A., Lind M., Kassem M., and Mygind T. - Effect of dynamic 3-D culture on proliferation, distribution, and osteogenic differentiation of human mesenchymal stem cells, J. Biomed Mater Res. A. 89 (1) (2009) 96-107. doi:10.1002/ jbm.a.31967. DOI: https://doi.org/10.1002/jbm.a.31967

Sikavitsas V. I., Bancroft G. N., and Mikos A. G. - Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor, Journal of Biomedical Materials Research. 62 (1) (2002) 136-148. doi:10.1002/jbm.10150. DOI: https://doi.org/10.1002/jbm.10150

Piola M., Soncini M., Cantini M., Sadr N., Ferrario G., and Fiore G. B. - Design and functional testing of a multichamber perfusion platform for three-dimensional scaffolds, Scientific World Journal. Vol.? (2013) 123974. doi:10.1155/2013/123974. DOI: https://doi.org/10.1155/2013/123974

Jeong J. Y., Park S. H., Shin J. W., Kang Y. G., Han K. H., and Shin J. W. - Effects of intermittent hydrostatic pressure magnitude on the chondrogenesis of MSCs without biochemical agents under 3D co-culture, J. Mater Sci. Mater. Med. 23 (11) (2012) 2773-2781. doi:10.1007/s10856-012-4718-z. DOI: https://doi.org/10.1007/s10856-012-4718-z

Egger D. Fischer M., Clementi A., Ribitsch V., Hansmann J., and Kasper C. - Development and Characterization of a Parallelizable Perfusion Bioreactor for 3D Cell Culture, Bioengineering. 4 (2) (2017) 51. doi:10.3390/bioengineering4020051. DOI: https://doi.org/10.3390/bioengineering4020051

Dak P., Ebrahimi A., Swaminathan V., Duarte-Guevara C., Bashir R., and Alam M. A. - Droplet-based Biosensing for Lab-on-a-Chip, Open Microfluidics Platforms, Biosensors. 6 (2) (2016) 14. doi:10.3390/bios6020014.

Tilles A. W., Baskaran H., Roy P., Yarmush M. L., and Toner M. - Effects of oxygenation and flow on the viability and function of rat hepatocytes cocultured in a microchannel flat-plate bioreactor, Biotechnol Bioeng. 73 (5) (2001) 379-389. doi:10.1002/bit.1071. DOI: https://doi.org/10.1002/bit.1071

Dak P., Ebrahimi A., Swaminathan V., Duarte-Guevara C., Bashir R., and Alam M. A. - Droplet-based Biosensing for Lab-on-a-Chip, Open Microfluidics Platforms, Biosensors. 6 (2) (2016) 14. doi:10.3390/bios6020014 DOI: https://doi.org/10.3390/bios6020014

Dutta G., Rainbow J., Zupancic U., Papamatthaiou S., Estrela P., and Moschou D. - Microfluidic Devices for Label-Free DNA Detection, Chemosensors. 6 (4) (2018) 43. doi:10.3390/chemosensors6040043. DOI: https://doi.org/10.3390/chemosensors6040043

Shaw D. L. - Is Open Science the Future of Drug Development?, The Yale Journal of Biology and Medicine. 90 (1) (2017) 147-151.

Gwak H. Gwak H., Kim J., Kashefi-Kheyrabadi L., Kwak B., Hyun K. A., and Jung H. I. - Progress in Circulating Tumor Cell Research Using Microfluidic Devices, Micromachines. 9 (7) (2018) 353. doi:10.3390/mi9070353. DOI: https://doi.org/10.3390/mi9070353

Weltin A., Slotwinski K., Kieninger J., Moser I., Jobst G., Wego M., Ehret R., and Urban G. A. - Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem, Lab Chip. 14 (1) (2014) 138-146. doi:10.1039/ C3LC50759A. DOI: https://doi.org/10.1039/C3LC50759A

Papantoniou I., Hoare M., and Veraitch F. S. - The release of single cells from embryoid bodies in a capillary flow device, Chemical Engineering Science. 66 (4) (2011) 570-581. doi:10.1016/j.ces.2010.10.026. DOI: https://doi.org/10.1016/j.ces.2010.10.026

Lin R. Z. and Chang H. Y. - Recent advances in three-dimensional multicellular spheroid culture for biomedical research, Biotechnology Journal. 3 (9-10) (2008) 1172-1184. doi:10.1002/biot.200700228. DOI: https://doi.org/10.1002/biot.200700228

Downloads

Published

17-04-2023

How to Cite

[1]
N. T. D. Nguyen, T. U. Pham, and Tran Dinh Thiet, “Development of novel, simple and low–cost microfluidic platform for supporting 3D dynamic cell culture”, Vietnam J. Sci. Technol., vol. 61, no. 2, pp. 209–218, Apr. 2023.

Issue

Section

Materials