Novel research on polyamide 11 nanocomposites reinforced by Titania nanoparticle deposited jute fibres

Do Van Cong, Nguyen Vu Giang, Tran Huu Trung, Do Quang Tham, Nguyen Thi Thai, Mai Van Tien, Nguyen Thi Huong
Author affiliations

Authors

  • Do Van Cong Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Ha Noi, Viet Nam
  • Nguyen Vu Giang Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Ha Noi, Viet Nam
  • Tran Huu Trung Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Ha Noi, Viet Nam
  • Do Quang Tham Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Ha Noi, Viet Nam
  • Nguyen Thi Thai Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Ha Noi, Viet Nam
  • Mai Van Tien Environment Faculty, Hanoi University of Natural Resources & Environment, 41A Phu Dien Road, Phu Dien precinct, North-Tu Liem district, Ha Noi, Viet Nam
  • Nguyen Thi Huong Faculty of Chemical Technology, Hanoi University of Industry, 298 Cau Dien Street, Bac Tu Liem District, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/16554

Keywords:

jute fibres, alkaline treatment, polyamide 11, biocomposites, modification, vinyltrimethoxysilane

Abstract

The combination of jute fibres and polyamide 11 (PA11) to produce full biocomposites is expectance of scientists due to many benefits of both these materials such as high mechanical performances and environmentally friendly behaviors. Unfortunately, there is scarce published research on these bicomposites uptil now. In order to improve the interfacial interaction and adhesion between jute fibres and PA11 resin matrix, an important key in the fabrication of the composites. In this study, a combination of alkaline treatment and Tetraisopropyl orthotitanate (Tip) modification was employed to modify the surface of jute fibres. The deposition or grafting of TiO2 nanoparticles was proved by using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) observations and energy dispersive X-ray spectroscopy (EDS/EDX) analysis. The improvement of the interfacial interaction and adhesion between surface modified jute fibres and PA11 resin as well as high performances (mechanical properties, thermal oxidative and water absorption stability) of obtained biocomposites were also clarified.

Downloads

Download data is not yet available.

References

A. K. Rana, K. Jayachandran, Jute Fiber for Reinforced Composites and its Prospects, Mol. Cryst. and Liq. Crysf. 353 (2000) 35-45. DOI:10.1080/10587250008025646 DOI: https://doi.org/10.1080/10587250008025646

A. K. Mohanty, M. Misra, G. Hinrichsen, Biofibers, biodegradable polymers and biocomposites: An overview, Macromol. Mater. Eng. 276 (2000) 1-24. DOI:10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W DOI: https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W

R. Patel, D. A. Ruehle, J. R. Dorgan, P. Halley, D. Martin, Biorenewable Blends of Polyamide-11 and Polylactide, Polym. Eng. Sci. 54 (2014) 1523-1532. DOI:10.1002/pen.23692 DOI: https://doi.org/10.1002/pen.23692

H. Oliver-Ortega, L. A Granda, F. X. Espinach, J. A Méndez, F. Julian, P. Mutjé, Tensile properties and micromechanical analysis of stone groundwood from softwood reinforced bio-based polyamide11 composites, Compos. Sci. Technol. 132 (2016) 123-130. https://doi.org/10.1016/j.compscitech.2016.07.004 DOI: https://doi.org/10.1016/j.compscitech.2016.07.004 https://doi.org/10.1016/j.compscitech.2016.07.004">

H. Oliver-Ortega, J. A. Méndez, F. X. Espinach, Q. Tarrés, M. Ardanuy, P. Mutjé, Impact Strength and Water Uptake Behaviors of Fully Bio-Based PA11-SGW Composites, Polymers, 10 (2018) 717-728. https://doi.org/10.3390/polym10070717 DOI: https://doi.org/10.3390/polym10070717 https://doi.org/10.3390/polym10070717">

C. Baley, M. Lan, A. Bourmaud, A. L. Duigou, Compressive and tensile behaviour of unidirectional composites reinforced by natural fibres: influence of fibres (flax and jute), matrix and fibre volume fraction, Mater. Today Commun. 16 (2018) 300-306. https://doi.org/10.1016/j.mtcomm.2018.07.003 DOI: https://doi.org/10.1016/j.mtcomm.2018.07.003 https://doi.org/10.1016/j.mtcomm.2018.07.003">

P. Russo, G. Simeoli, L. Vitiello, G. Filippone, Bio-Polyamide 11 Hybrid Composites Reinforced with Basalt/Flax Interwoven Fibers: A Tough Green Composite for Semi-Structural Applications, Fibers, 7(5) (2019) 41. https://doi.org/10.3390/fib7050041 DOI: https://doi.org/10.3390/fib7050041 https://doi.org/10.3390/fib7050041">

P. Zierdt, T. Theumer, G. Kulkarni, V. Däumlich, J. Klehm, U. Hirsch, A. Weber, Sustainable wood-plastic composites from bio-based polyamide 11 and chemically modified beech fibers, Mater. Technol. 6 (2015) 6-14. https://doi.org/10.1016/j.susmat.2015.10.001 DOI: https://doi.org/10.1016/j.susmat.2015.10.001 https://doi.org/10.1016/j.susmat.2015.10.001">

T. Semba, K. Taguma, M. Tawara, A. Ito, K. Kitagawa, A. Sato, H. Yang, Biocomposites composed of Polyamide 11 and Cellulose Nanofibers Pretreated with a Cationic Reagents, Nihon Reoroji Gakkaishi, 45(1) (2016) 39-47. DOI:10.1678/rheology.45.39 DOI: https://doi.org/10.1678/rheology.45.39

H. Geoffrey, D. Jany, D. Eric, M. D. Huynh, T. Hoang, N. V. Giang, T. H. Trung, P. Philippe, L. Colette, Physical structure and mechanical properties of polyamide/bamboo composites, J. Therm. Anal. Calorim. 129(3) (2017) 1463-1469. http://doi.org/10.1007/s10973-017-6297-1 DOI: https://doi.org/10.1007/s10973-017-6297-1 http://doi.org/10.1007/s10973-017-6297-1">

M. D. Huynh, T. H. Trung, D. V. Cong, T. Hoang, E. Dantras, L. Colette, N. V. Giang, Effect of Maleic Anhydride Grafted Ethylene Vinyl Acetate Compatibilizer on the Mechanical, Thermal Properties and Weathering Resistance of Polyamide 11/Bamboo Fiber Composite, Mater. Trans. 61 (2020) 1527-1534. https://doi.org/10.2320/matertrans.MT-MN2019001 DOI: https://doi.org/10.2320/matertrans.MT-MN2019001 https://doi.org/10.2320/matertrans.MT-MN2019001">

G. Seshanandan, D. Ravindran and T. Sornakumara, Mechanical properties of nano titanium oxide particles – hybrid jute-glass FRP composites, Materials Today: Proceedings, 3 (2016) 1383–1388. DOI:10.1016/j.matpr.2016.04.019 DOI: https://doi.org/10.1016/j.matpr.2016.04.019

B. Suresha, S. L. Guggare, N. V. Raghavendra, Effect of TiO2 Filler Loading on Physico-Mechanical Properties and Abrasion of Jute Fabric Reinforced Epoxy Composites, MSA, 7(9) (2016) 510-526. DOI:10.4236/MSA.2016.79044 DOI: https://doi.org/10.4236/msa.2016.79044

P. Pavel, V. Aljaz, P. Marko, S. S. Andrijana, M. Mohor, S. V. Angela, N. Urban, O. Boris, Structural studies of TiO2/wood coatings prepared by hydrothermal deposition of rutile particles from TiCl4 aqueous solutions on spruce (Picea Abies) wood, Appl. Surf. Sci. 372 (2016) 125-138. DOI:10.1016/j.apsusc.2016.03.065 DOI: https://doi.org/10.1016/j.apsusc.2016.03.065

H. Wang, G. Xian, H. Li, Grafting of nano-TiO2 onto flax fibers and the enhancement of the mechanical properties of the flax fiber and flax fiber/epoxy composite, Composites: Part A, 76 (2015)172–180. https://doi.org/10.1016/j.compositesa.2015.05.027 DOI: https://doi.org/10.1016/j.compositesa.2015.05.027 https://doi.org/10.1016/j.compositesa.2015.05.027">

R. P. G. Ranganagowda, S. S. Kamath, B. Bennehalli. Extraction and characterization of cellulose from natural areca fiber. Mat. Sci. Res. India 16 (1) (2019), 86-93. http://dx.doi.org/10.13005/msri/160112 DOI: https://doi.org/10.13005/msri/160112 http://dx.doi.org/10.13005/msri/160112">

G. Lui, J. Y. Liao, A. Duan, Z. Zhang, M. Fowler and A. Yu, Graphene-Wrapped Hierarchical TiO2 Nanoflower Composite with Enhanced Photocatalytic Performance, J. Mater. Chem. 1(39) (2013) ID: 95610231. DOI:10.1039/C3TA12329D DOI: https://doi.org/10.1039/c3ta12329d

X. Liu, Y. Cui, S. Hao, H. Chen, Influence of Depositing Nano-SiO2 Particles on the Surface Microstructure and Properties of Jute Fibers via In Situ Synthesis, Composites: Part A, 109 (2018) 368-375. https://doi.org/10.1016/j.compositesa.2018.03.026 DOI: https://doi.org/10.1016/j.compositesa.2018.03.026 https://doi.org/10.1016/j.compositesa.2018.03.026">

J. Raabe, A. S. Fonseca, L. Bufalino, C. Ribeiro, M. A. Martins, J. M. Marconcini, G. H. D. Tonoli, Evaluation of reaction factors for deposition of silica (SiO2) nanoparticles on cellulose fibers, Carbohydr. Polym. 114 (2014) 424-431. https://doi.org/10.1016/j.carbpol.2014.08.042 DOI: https://doi.org/10.1016/j.carbpol.2014.08.042 https://doi.org/10.1016/j.carbpol.2014.08.042">

T. Mukherjee and N. Kao, PLA Based Biopolymer Reinforced with Natural Fibre: A Review, J. Polym. Environ. 19 (2011) 714­725. DOI:10.1007/s10924-011-0320-6. DOI: https://doi.org/10.1007/s10924-011-0320-6

Downloads

Published

30-12-2022

How to Cite

[1]
V. C. Do, “Novel research on polyamide 11 nanocomposites reinforced by Titania nanoparticle deposited jute fibres”, Vietnam J. Sci. Technol., vol. 60, no. 6, pp. 1032–1043, Dec. 2022.

Issue

Section

Materials