Occurrence and human exposure risk assessment of brominated and organophosphate flame retardants in indoor dust in Ha Noi, Viet Nam
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/16449Keywords:
brominated flame retardants (BFRs), polybrominated diphenyl ethers (PBDEs), organophosphate flame retardants (OPFRs), indoor dust, human exposureAbstract
The widespread use of flame retardants in commercial and industrial products has led to their increased presence in the environment. Recently, indoor dust has been identified as a major human exposure route for flame retardants. In the present study, brominated flame retardants (BFRs) and organophosphate flame retardants (OPFRs) were examined in indoor dust samples collected from apartments in Hanoi, Vietnam. OPFRs were detected at the highest concentrations with the mean concentration of ∑OPFRs was 8700 ng/g (ranged from 1400 to 18000 ng/g). Tris(1-chloro-2-propyl) phosphate (TCPP) and tris(2-butoxyethyl) phosphate (TBOEP) were the most abundant OPFRs in all indoor dust samples, accounting for 50 % (ranged 22 – 69 %) and 33 % (ranged 16 – 63 %) of the total OPFRs levels, respectively. The mean concentrations of total polybrominated diphenyl ethers (PBDEs) and total novel brominated flame retardants (NBFRs) in these samples were 200 ng/g (ranged 67 - 480 ng/g) and 310 ng/g (ranged 56 - 1500 ng/g), respectively. Polybrominated diphenyl ether congener 209 (BDE 209) and decabromodiphenyl ethane (DBDPE) were the most predominant components in PBDEs and NBFRs, respectively. Other BFRs were only found in some samples at very low levels. The estimated daily intake doses (IDs) of FRs via dust ingestion were calculated for both adults and children. The results revealed that the estimated levels of compound exposure through dust ingestion, even under the high-exposure scenario were also below their reference dose (RfD) values, indicating that human health risks from exposure to flame retardants (FRs) via indoor dust ingestion are not significant.
Downloads
References
Van der veen, I. and J. Boer - Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis, Chemosphere. 88 (2012) 1119-53. https://doi.org/10.1016/j.chemosphere.2012.03.067 DOI: https://doi.org/10.1016/j.chemosphere.2012.03.067
Cequier, E., et al. - Occurrence of a broad range of legacy and emerging flame retardants in indoor environments in Norway. Environ Sci Technol. 48 (12) (2014) 6827-35. https://doi.org/10.1021/es500516u DOI: https://doi.org/10.1021/es500516u
De Wit C.A. - An overview of brominated flame retardants in the environment, Chemosphere. 46 (5) (2002) 583-624. https://doi.org/10.1016/S0045-6535(01)00225-9. DOI: https://doi.org/10.1016/S0045-6535(01)00225-9
Batterman, S. A., Chernyak S., Jia C., Godwin C. and Charles S. - Concentrations and emissions of polybrominated diphenyl ethers from U.S. houses and garages, Environ Sci Technol. 43 (8) (2009) 2693-700. https://doi.org/10.1021/es8029957. DOI: https://doi.org/10.1021/es8029957
Kemmlein, S., Herzke D., and Law R. J. - Brominated flame retardants in the European chemicals policy of REACH-Regulation and determination in materials, J Chromatogr A. 1216 (3) (2009) 320-33. https://doi.org/10.1016/j.chroma.2008.05.085 DOI: https://doi.org/10.1016/j.chroma.2008.05.085
Stieger G., Scheringer M., Ng C. A. and Hungerbuhler K. - Assessing the persistence, bioaccumulation potential and toxicity of brominated flame retardants: data availability and quality for 36 alternative brominated flame retardants, Chemosphere. 116 (2014) 118-23. https://doi.org/10.1016/j.chemosphere.2014.01.083. DOI: https://doi.org/10.1016/j.chemosphere.2014.01.083
Kim Y. R., Harden F. A., Toms L. M. and Norman R. E. - Health consequences of exposure to brominated flame retardants: a systematic review, Chemosphere. 106 (2014) 1-19. https://doi.org/10.1016/j.chemosphere.2013.12.064. DOI: https://doi.org/10.1016/j.chemosphere.2013.12.064
Lyche J. L., Rosseland C., Berge G. and Polder A. - Human health risk associated with brominated flame-retardants (BFRs), Environ Int. 74 (2015) 170-80. https://doi.org/10.1016/j.envint.2014.09.006. DOI: https://doi.org/10.1016/j.envint.2014.09.006
Stapleton H. M., Eagle S., Anthopolos R., Wolkin A. and Miranda M. L. - Associations between polybrominated diphenyl ether (PBDE) flame retardants, phenolic metabolites, and thyroid hormones during pregnancy, Environ Health Perspect. 119 (10) (2011) 1454-9. doi: 10.1289/ehp.1003235. DOI: https://doi.org/10.1289/ehp.1003235
http://www.epa.gov/oppt/existingchemicals/pubs/actionplans/deccadbe.html, 2009b (accessed 15 March 2021).
UNEP/POPS/COP.4/17 - Recommendations of the persistent organic pollutants review committee of the Stockholm convention to amend annexes A, B or C of the convention, Stockholm Convention on Persistent Organic Pollutants, 2009, pp. 1-13.
Malliari E. and Kalantzi O. I. - Children's exposure to brominated flame retardants in indoor environments - A review, Environ Int. 108 (2017) 146-169. https://doi.org/10.1016/j.envint.2017.08.011. DOI: https://doi.org/10.1016/j.envint.2017.08.011
WHO - Flame retardants: tris(chloropropyl) phosphate and tris(2-chloroethyl) phosphate, Environ. Health Criteria, 1998.
Meeker J. D. and Stapleton H. M. - House dust concentrations of organophosphate flame retardants in relation to hormone levels and semen quality parameters, Environ Health Perspect. 118 (3) (2010) 318-340. https://doi.org/10.1289/ehp.0901332. DOI: https://doi.org/10.1289/ehp.0901332
Covaci A., Harrad S., Abdallah M., Ali N., Law R. J., Herzke D. and A de Wit C. - Novel brominated flame retardants: a review of their analysis, environmental fate and behaviour, Environ Int, 37(2) (2011) 532-56. https://doi.org/10.1016/j.envint.2010.11.007. DOI: https://doi.org/10.1016/j.envint.2010.11.007
Wang F., Wang J., Dai J., Hu G., Wang J., Luo X. and Mai B. - Comparative tissue distribution, biotransformation and associated biological effects by decabromodiphenyl ethane and decabrominated diphenyl ether in male rats after a 90-day oral exposure study, Environ Sci Technol. 44 (14) (2010) 5655-60. https://doi.org/10.1021/es101158e. DOI: https://doi.org/10.1021/es101158e
Wei G. L., Li D. Q., Zhuo M. N., Liao Y. S., Xie Z. Y., Guo T. L., Li J. J., Zhang S. Y. and Liang Z. Q. - Organophosphorus flame retardants and plasticizers: sources, occurrence, toxicity and human exposure, Environ Pollut. 196 (2015) 29-46. https://doi.org/10.1016/j.envpol.2014.09.012. DOI: https://doi.org/10.1016/j.envpol.2014.09.012
European Union - Risk Assessment Report of Tri(2-chloroethyl) Phosphate (CAS No: 115-96-8 EINECS No: 204-118-5). 2008.
Stapleton H., Sharma S., Getzinger G., Ferguson P., Gabriel M., Webster T. and Blum A. - Novel and high volume use flame retardants in US couches reflective of the 2005 PentaBDE phase out, Sci. Technol. 46 (2012) 13432–13439. https://doi.org/10.1021/es303471d. DOI: https://doi.org/10.1021/es303471d
Harrad S., A. de Wit C., Abdallah M. A., Bergh C., Bjorklund J. A., Covaci A., Diamond M., Huber S., Leonards P., Haug L. S. and Thomsen C. - Indoor contamination with hexabromocyclododecanes, polybrominated diphenyl ethers, and perfluoroalkyl compounds: an important exposure pathway for people, Environ Sci Technol. 44 (9) (2010) 3221-3251. https://doi.org/10.1021/es903476t. DOI: https://doi.org/10.1021/es903476t
Stapleton H. M., Klosterhaus S., Eagle S., Fuh J., Meeker J. D., Blum A. and Webster T. F. - Detection of organophosphate flame retardants in furniture foam and U.S. house dust, Environ Sci Technol, 43 (19) (2009) 7490-7494. https://doi.org/10.1021/es9014019. DOI: https://doi.org/10.1021/es9014019
Liagkouridis I., Cousins I. T. and Cousins A. P. - Emissions and fate of brominated flame retardants in the indoor environment: a critical review of modelling approaches, Sci Total Environ, 491-492 (2014) 87-99. https://doi.org/10.1016/j.scitotenv.2014.02.005. DOI: https://doi.org/10.1016/j.scitotenv.2014.02.005
Cao Z., Xu F., Covaci A., Wu M., Wang H., Yu G., Wang B., Deng S., Huang J. and Wang X. - Distribution patterns of brominated, chlorinated, and phosphorus flame retardants with particle size in indoor and outdoor dust and implications for human exposure, Environ Sci Technol, 48 (15) (2014) 8839-8884. https://doi.org/10.1021/es501224b. DOI: https://doi.org/10.1021/es501224b
Harrad S., Ibarra C., Diamond M., Melymuk L., Robson M., Douwes J., Roosens L., Dirtu A. C. and Covaci A. - Polybrominated diphenyl ethers in domestic indoor dust from Canada, New Zealand, United Kingdom and United States. Environ Int, 34 (2) (2008) 232-239. https://doi.org/10.1016/j.envint.2007.08.008. DOI: https://doi.org/10.1016/j.envint.2007.08.008
Frederiksen M., Vorkamp K., Thomsen M., and Knudsen L. E. - Human internal and external exposure to PBDEs--a review of levels and sources, Int J Hyg Environ Health, 212 (2) (2009) 109-142. https://doi.org/10.1016/j.ijheh.2008.04.005. DOI: https://doi.org/10.1016/j.ijheh.2008.04.005
Kim U. J., Y. Wang, W. Li, and K. Kannan - Occurrence of and human exposure to organophosphate flame retardants/plasticizers in indoor air and dust from various microenvironments in the United States, Environment international. 125 (2019) 342-349. https://doi.org/10.1016/j.envint.2019.01.065. DOI: https://doi.org/10.1016/j.envint.2019.01.065
Zheng X., Xu F., Chen K., Zeng Y., Luo X., Chen S., Mai B. and Covaci A. - Flame retardants and organochlorines in indoor dust from several e-waste recycling sites in South China: composition variations and implications for human exposure, Environ Int. 78 (2015) 1-7. https://doi.org/10.1016/j.envint.2015.02.006. DOI: https://doi.org/10.1016/j.envint.2015.02.006
Van den Eede N., Dirtu A. C., Ali N., Neels H., and Covaci A., "Multi-residue method for the determination of brominated and organophosphate flame retardants in indoor dust," Talanta, vol. 89, pp. 292-300, Jan 30 2012. DOI: https://doi.org/10.1016/j.talanta.2011.12.031
Ali N., Ali L., Mehdi T., Dirtu A. C., Al-Shammari F., Neels H. and Covaci A. - Levels and profiles of organochlorines and flame retardants in car and house dust from Kuwait and Pakistan: implication for human exposure via dust ingestion, Environ Int. 55 (2013) 62-70. https://doi.org/10.1016/j.envint.2013.02.001. DOI: https://doi.org/10.1016/j.envint.2013.02.001
Teuschler L.K. and Hertzberg R.C. - Current and future risk assessment guidelines, policy, and methods development for chemical mixtures, Toxicology 105 (2-3) (1995) 137-44. https://doi.org/10.1016/0300-483x(95)03207-v. DOI: https://doi.org/10.1016/0300-483X(95)03207-V
Tue N. M., Takahashi S., Suzuki G., Isobe T., Viet P. H., Kobara Y., Seike N., Zhang G. and Tanabe S. - Contamination of indoor dust and air by polychlorinated biphenyls and brominated flame retardants and relevance of non-dietary exposure in Vietnamese informal e-waste recycling sites, Environ Int. 51 (2013) 160-166. https://doi.org/10.1016/j.envint.2012.11.006. DOI: https://doi.org/10.1016/j.envint.2012.11.006
Anh, H. Q., Tomioka K., Tue N. M., Trí T. M., Minh T .B. and Takahashi S. - PBDEs and novel brominated flame retardants in road dust from northern Vietnam: Levels, congener profiles, emission sources and implications for human exposure, Chemosphere, 197 (2018) 389-398. https://doi.org/10.1016/j.chemosphere.2018.01.066. DOI: https://doi.org/10.1016/j.chemosphere.2018.01.066
La, A.G.M.J., Hale R. C., and Harvey E. - Detailed polybrominated diphenyl ether (PBDE) congener composition of the widely used penta-, octa-, and deca-PBDE technical flame-retardant mixtures, Environ Sci Technol. 40 (20) 2006, 6247-54. https://doi.org/10.1021/es060630m. DOI: https://doi.org/10.1021/es060630m
Marklund A., Andersson B. and Haglund P. - Organophosphorus flame retardants and plasticizers in Swedish sewage treatment plants, Environ Sci Technol. 39 (19) (2008) 7423-7431. https://doi.org/10.1021/es051013l. DOI: https://doi.org/10.1021/es051013l
Brandsma S., Boer J., Leonards P., Cofino W. and Covaci A. - Organophosphorus flame-retardant and plasticizer analysis, including recommendations from the first worldwide interlaboratory study, TrAC Trends in Analytical Chemistry. 43 (2013) 217-228. https://doi.org/10.1016/j.trac.2012.12.004. DOI: https://doi.org/10.1016/j.trac.2012.12.004
Yu G., Bu Q., Cao Z., Du X., Xia J., Wu M. and Huang J. - Brominated flame retardants (BFRs): A review on environmental contamination in China, Chemosphere. 150 (2016) 479-490. https://doi.org/10.1016/j.chemosphere.2015.12.034. DOI: https://doi.org/10.1016/j.chemosphere.2015.12.034
Sun Y., Liu L. Y., Sverko E., Li Y. F., Li H. L., Huo C. Y., Ma W. L., Song W. W. and Zhang Z. F. - Organophosphate flame retardants in college dormitory dust of northern Chinese cities: Occurrence, human exposure and risk assessment, Sci Total Environ. 665 (2019) 731-738. https://doi.org/10.1016/j.scitotenv.2019.02.098. DOI: https://doi.org/10.1016/j.scitotenv.2019.02.098
He C.T., Zheng X. B., Yan X., Zheng J., Wang M. H., Tan X., Qiao L., Chen S. J., Yang Z. Y. and Mai B. X. - Organic contaminants and heavy metals in indoor dust from e-waste recycling, rural, and urban areas in South China: Spatial characteristics and implications for human exposure, Ecotoxicol Environ Saf. 140 (2017) 109-115. https://doi.org/10.1016/j.ecoenv.2017.02.041. DOI: https://doi.org/10.1016/j.ecoenv.2017.02.041
Mizouchi S., Ichiba M., Takigami H., Kajiwara N., Takamuku T., Miyajima T., Kodama H., Someya T. and Ueno D. - Exposure assessment of organophosphorus and organobromine flame retardants via indoor dust from elementary schools and domestic houses, Chemosphere. 123 (2015) 17-25. https://doi.org/10.1016/j.chemosphere.2014.11.028. DOI: https://doi.org/10.1016/j.chemosphere.2014.11.028
Lee H.K., Kang H., Lee S., Kim S., Choi K. and Moon H. B. - Human exposure to legacy and emerging flame retardants in indoor dust: A multiple-exposure assessment of PBDEs, Sci Total Environ. 719 (2020) 137386. https://doi.org/10.1016/j.scitotenv.2020.137386 DOI: https://doi.org/10.1016/j.scitotenv.2020.137386
Cristale J., Belé T. G. A., Lacorte S. and Marchi M. R. R. - Occurrence and human exposure to brominated and organophosphorus flame retardants via indoor dust in a Brazilian city, Environ Pollut. 237 (2018) 695-703. https://doi.org/10.1016/j.envpol.2017.10.110. DOI: https://doi.org/10.1016/j.envpol.2017.10.110
Allgood J.M., Jimah T., McClaskey C. M., Guardia M. J. L., Hammel S. C., Zeineddine M. M., Tang L. W., Runnerstrom M. G. and Ogunseitan O. A. - Potential human exposure to halogenated flame-retardants in elevated surface dust and floor dust in an academic environment, Environ Res 153 (2017) 55-62. https://doi.org/10.1016/j.envres.2016.11.010. DOI: https://doi.org/10.1016/j.envres.2016.11.010
de la Torre A., Navarro I. and de los Asngeles Martínez M. - Organophosphate compounds, polybrominated diphenyl ethers and novel brominated flame retardants in European indoor house dust: Use, evidence for replacements and assessment of human exposure, J Hazard Mater. 382 (2020) 121009. https://doi.org/10.1016/j.jhazmat.2019.121009. DOI: https://doi.org/10.1016/j.jhazmat.2019.121009
Zhou L., Hiltscher M. and Püttmann W. - Occurrence and human exposure assessment of organophosphate flame retardants (OPFRs) in indoor dust from various microenvironments of the Rhine/Main region, Germany, Indoor air. 27 (2017). https://doi.org/10.1111/ina.12397. DOI: https://doi.org/10.1111/ina.12397
Kademoglou K., Xu F., Padilla-Sanchez J. A., Haug L. S., Covaci A. and Collins C. D. - Legacy and alternative flame retardants in Norwegian and UK indoor environment: Implications of human exposure via dust ingestion, Environ Int. 102 (2017) 48-56. https://doi.org/10.1016/j.envint.2016.12.012. DOI: https://doi.org/10.1016/j.envint.2016.12.012
Jones-Otazo H. A., Clarke J. P., Diamond M. L., Archbold J. A., Ferguson G., Harner T., Richardson G. M., Ryan J. J. and Wilford B. - Is house dust the missing exposure pathway for PBDEs? An analysis of the urban fate and human exposure to PBDEs, Environ Sci Technol. 39 (14) (2005) 5121-5150. https://doi.org/10.1021/es048267b. DOI: https://doi.org/10.1021/es048267b
Pawar G., Abdallah M. A., De Saa E. V. and Harrad S. - Dermal bioaccessibility of flame retardants from indoor dust and the influence of topically applied cosmetics. J Expo Sci Environ Epidemiol, 27 (1) 2017 100-105. https://doi.org/10.1038/jes.2015.84. DOI: https://doi.org/10.1038/jes.2015.84
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.