Effects of temperature and relative humidity on resonant frequency of mems cantilever resonators under atmospheric pressure
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/16347Keywords:
squeeze film damping (SFD), resonant frequency, MEMS cantilever resonator, relative humidity, luminescence temperature anti-quenching, atmospheric pressureAbstract
In this study, the effects of temperature and relative humidity on the resonant frequency of a micro-electro-mechanical system (MEMS) cantilever resonator under atmospheric pressure (p=101325 Pa) are discussed. The squeeze film damping (SFD) problem of MEMS cantilever resonators is modeled by solving the modified molecular gas lubrication (MMGL) equation, the equation of motion of micro-cantilever, and their appropriate boundary conditions, simultaneously in the eigen-value problem. The effective viscosity (µeff(RH, T)) of moist air is utilized to modify the MMGL equation to consider the effects of temperature and relative humidity under atmospheric pressure. Thus, the effects of temperature (T) and relative humidity (RH) on the resonant frequency of MEMS cantilever resonators over a wide range of gap thicknesses and under atmospheric pressure are discussed. The results showed that the frequency shift increases as the relative humidity and temperature increase. The influence of relative humidity on the resonant frequency becomes more significant under conditions of higher temperature and smaller gap thickness.
Downloads
References
Takahashi H., Dung, N. M., Matsumoto K. and Shimoyama I. - Differential pressure sensor using a piezoresistive MEMS cantilever, J. Micromech. Microeng 22 (2012) 055015-055021. https://doi.org/10.1088/0960-1317/22/5/055015. DOI: https://doi.org/10.1088/0960-1317/22/5/055015
Baller M. K., Lang H. P., Fritz J., Gerber C., Gimzewski J. K., Drechsler U., Rothuizen H., Despont M., Vettiger P., Battiston F. M., Ramseyer J. P., Fornaro P., Meyer E. and Gu¨ntherodt H. J. - A MEMS cantilever array-based artificial nose, Ultramicroscopy 82 (2000) 1-9. https://doi.org/ 10.1016/s0304-3991(99)00123-0. DOI: https://doi.org/10.1016/S0304-3991(99)00123-0
Lang H. P., Hegner M. and Gerber C. - MEMS cantilever array sensors, materialstoday 8 (4) (2005) 30-36. https://doi.org/10.1016/S1369-7021(05)00792-3. DOI: https://doi.org/10.1016/S1369-7021(05)00792-3
Gupta A., Akin D. and Bashir R. - Single virus particle mass detection using microresonators with nanoscale thickness, Appl. Phys. Lett. 84 (11) (2004) 1976-1978. https://doi.org/10.1063/1.1667011. DOI: https://doi.org/10.1063/1.1667011
Arjunan N. and Shanmuganantham T. - Stress and Sensitivity Analysis of MEMS cantilever Based MEMS Sensor for Environmental Applications, Journal of Research in Engineering and Applied Sciences. 01 (01) (2016) 20-24. https://doi.org/ 10.46565/jreas.2016.v01i01.003. DOI: https://doi.org/10.46565/jreas.2016.v01i01.003
Chen Q., Fang J., Ji H. F. and Varahramyan K. - Micromachined SiO2 micro MEMS cantilever for high sensitive moisture sensor, Microsyst. Technol. 14 (2008) 739-746. https://doi.org/ 10.1007/s00542-007-0489-8. DOI: https://doi.org/10.1007/s00542-007-0489-8
Hosaka H., Itao K. and Kuroda S. - Damping characteristics of beam-shaped micro-oscillators, Sens. Actuators. A. Phys. 49 (1-2) (1995) 87-95. https://doi.org/ 10.1016/0924-4247(95)01003-J. DOI: https://doi.org/10.1016/0924-4247(95)01003-J
Bao M. and Yang H. Squeeze film air damping in MEMS, Sens. Actuators. A. Phys. 136 (1) (2007) 3-27. https://doi.org/10.1016/j.sna.2007.01.008. DOI: https://doi.org/10.1016/j.sna.2007.01.008
Lee J. W. - Analysis of fuid-structure interaction for predicting resonant frequencies and quality factors of a micro MEMS cantilever on a squeeze-film, J. Mech. Sci. Technol. 25 (2011) 3005-3013. DOI: https://doi.org/10.1007/s12206-011-0820-2
Pandey A. K. and Pratap R. - Effect of flexural modes on squeeze film damping in MEMS cantilever resonators, J. Micromech. Microeng. 17 (12) (2007) 2475-2484. https://doi.org/10.1088/0960-1317/17/12/013. DOI: https://doi.org/10.1088/0960-1317/17/12/013
Burg T. P. and Manalis S. R. - Suspended microchannel resonators for biomolecular detection, Appl. Phys. Lett. 83 (2) (2003) 2698-2700. https://doi.org/ 10.1063/1.1611625. DOI: https://doi.org/10.1063/1.1611625
Hwang C. C., Fung R. F., Yang R. F., Weng C. I. and Li W. L. - A new modified Reynolds equation for ultrathin film gas lubrication, IEEE Trans. Magn. 32 (2) (1996) 344-347. https://doi.org/10.1109/20.486518. DOI: https://doi.org/10.1109/20.486518
Li W. L. - A database for couette flow rate considering the effects of non-symmetric molecular interactions, J. Tribol. Trans. ASME 124 (4) (2002) 869-873. https://doi.org/10.1115/1.1479700. DOI: https://doi.org/10.1115/1.1479700
Li W. L. - A database for interpolation of Poiseuille flow rate for arbitrary Knudsen number lubrication problems, J. Chin. Inst. Eng. 26 (4) (2003) 455-466. https://doi.org/ 10.1080/02533839.2003.9670799. DOI: https://doi.org/10.1080/02533839.2003.9670799
Nguyen C. C. and Li W. L. - Effect of gas rarefaction on the quality factors of MEMS cantilever resonators, Microsyst. Technol. 23 (2016) 3185-3199. https://doi.org/ 10.1007/s00542-016-3068-z. DOI: https://doi.org/10.1007/s00542-016-3068-z
Nguyen C. C. and Li W. L. - Effects of surface roughness and gas rarefaction on the quality factor of MEMS cantilever resonators, Microsyst. Technol. 23 (8) (2016) 3489-3504. https://doi.org/10.1007/s00542-016-3140-8. DOI: https://doi.org/10.1007/s00542-016-3140-8
Nguyen C. C. and Li W. L. - Influences of temperature on the quality factors of MEMS cantilever resonators in gas rarefaction, Sens. Actuators. A. Phys. 261 (2017) 151-165. https://doi.org/10.1007/s00542-018-4239-x. DOI: https://doi.org/10.1016/j.sna.2017.04.050
Nguyen C.C., Ngo V. K. T., Le H. Q. and Li W. L. - Influences of relative humidity on the quality factors of MEMS cantilever resonators in gas rarefaction, Microsyst. Technol. 25 (2018) 2767-2782. https://doi.org/10.1007/s00542-018-4239-x. DOI: https://doi.org/10.1007/s00542-018-4239-x
Phan M. T., Trinh X. T., Le Q. C., Ngo V. K. T. and Nguyen C. C. - Effect of Environmental Conditions on Quality Factors of MEMS cantilever Beam Resonator in Gas Rarefaction, Sens. Imaging. 22 (6) (2020) 2767-2782. https://doi.org/10.1007/s11220-020-00329-9. DOI: https://doi.org/10.1007/s11220-020-00329-9
Nieva P. M., McGruer N. E. and Adams G. G. - Design and characterization of a micromachined Fabry–Perot vibration sensor for high-temperature applications, J. Micromech. Microeng. 16 (12) (2006) 2618-2631. https://doi.org/10.1088/0960-1317/16/12/015. DOI: https://doi.org/10.1088/0960-1317/16/12/015
Kim B., Hopcroft, M. A., Candler R. N., Jha C. M., Agarwal M., Melamud R., Chandorkar S. A., Yama G. and Kenny T. W. - Temperature dependence of quality factor in MEMS resonators, J. Microelectromech. Syst. 17 (3) (2008) 755-766. https://doi.org/10.1109/JMEMS.2008.924253. DOI: https://doi.org/10.1109/JMEMS.2008.924253
Ghaffari S., Ng E. J., Ahn C. H., Yang Y., Wang S., Hong V. A. and Kenny T. W. - Accurate modeling of quality factor behavior of complex silicon MEMS resonators, J. Microelectromech. Syst. 24 (2) (2015) 276-288. https://doi.org/ 10.1109/JMEMS.2014.2374451. DOI: https://doi.org/10.1109/JMEMS.2014.2374451
Tsilingiris P. T. - Thermophysical and transport properties of humid air at temperature range between 0 and 100 C, Energ. Convers. Manage. 49 (5) (2008) 1098-1110. https://doi.org/10.1016/j.enconman.2007.09.015. DOI: https://doi.org/10.1016/j.enconman.2007.09.015
Hosseinian E., Theillet P. O. and Pierron O. N. - Temperature and humidity effects on the quality factor of a silicon lateral rotary micro-resonator in atmospheric air, Sens. Actuators. A. Phys. 189 (2013) 380-389. https://doi.org/10.1016/j.sna.2012.09.020. DOI: https://doi.org/10.1016/j.sna.2012.09.020
Hosseinzadegan H., Pierron O. N. and Hosseinian E. - Accurate modeling of air shear damping of a silicon lateral rotary micro-resonator for MEMS environmental monitoring applications, Sens. Actuators. A. Phys. 216 (2014) 342-348. https://doi.org/ 10.1016/j.sna.2014.06.008. DOI: https://doi.org/10.1016/j.sna.2014.06.008
Jan M. T., Ahmad F., Hamid N. H. B., Khir M. H. B. M., Shoaib M. and Ashraf K. - Experimental investigation of moisture and temperature effects on resonance frequency and quality factor of CMOS-MEMS paddle resonator, Microelectron. Reliab 63 (2016) 82-89. https://doi.org/10.1016/j.microrel.2016.05.007. DOI: https://doi.org/10.1016/j.microrel.2016.05.007
Hasan M. H. - Influence Of Environmental Conditions On The Response Of MEMS Resonators, Dissertation, University of Nebraska, 2018.
Greenspan L. - Functional Equations for the Enhancement Factors for CO2- Free Moist Air, J. Res. Natl. Inst. Stan. 80A (1) (1976) 41-44. https://doi.org/ 10.6028/jres.080A.007. DOI: https://doi.org/10.6028/jres.080A.007
Tan Z. - Air pollution and greenhouse gases, Springer Science + Business Media, Singapore, 2014, pp. 33-34. DOI: https://doi.org/10.1007/978-981-287-212-8
Leissa A. W. - Vibration of Plates, In: NASA, Washington DC, 1969, pp. 1-6.
Brand O., Dufour I., Heinrich S., Josse F., Fedder G. K., Hierold C., Korvink J. G. andTabata O. - Ressonant MEMS fundamentals, Implementation and Application, WILEY-VCH, 2015. DOI: https://doi.org/10.1002/9783527676330
Reddy J. N. - An introduction to the finite element method, McGraw-Hill, New York, 1993.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.