Structural, electrical and ferroelectric properties of NiTiO3 synthesized by citrate-gel method
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/16212Keywords:
citrate gel method, Impedance control, dielectric properties, electrical conductivityAbstract
We carried out the study on NiTiO3 synthesized via citrate-gel method. Structural characteristics were determined by XRD and SEM. The impedance spectra analysis was used to elucidate the dependence of complex impedance values on temperature and frequency. The correlation between DC-conductivity and the inverse temperature values was presented and it complied with semiconductor behavior of Arrhenius type. The real dielectric constant, dielectric loss and AC-conductivity values were reported as a function of frequency ranging from 1 kHz to 10 MHz. Conductivity was found to obey Jonscher’s power law of conductivity. The NiTiO3 samples showed the ferroelectric behavior at room temperature.
Downloads
References
JingP. , LanW. , SuQ. , YuM. , Xie E. - Visible-Light Photocatalytic Activity of Novel NiTiO3 Nanowires with Rosary-Like Shape, Science of Advanced Materials 6 (2014) 434–440. DOI: https://doi.org/10.1166/sam.2014.1735
Wang Z., Wang Z., Yang W., Peng R., Lu Y. - Carbon-tolerant solid oxide fuel cells using NiTiO3 as an anode internal reforming layer, Journal of Power Sources 255 (2014) 404-409. DOI: https://doi.org/10.1016/j.jpowsour.2014.01.014
Della Gaspera E., Pujatti M., Guglielmi M., Post M. L., Martucci A. - Structural evolution and hydrogen sulfide sensing properties of NiTiO3–TiO2 sol–gel thin films containing Au nanoparticles, Materials Science and Engineering: B. 176 (2011) 716-722. DOI: https://doi.org/10.1016/j.mseb.2011.02.027
Huo K., Li Y., Chen R., Gao B., Peng C., Zhang W., Hu L., Zhang X., Chu P. K. - Recyclable non-enzymatic glucose sensor based on Ni/NiTiO3/TiO2 nanotube arrays, Chem. Plus Chem. 80 (2015) 576-582. DOI: https://doi.org/10.1002/cplu.201402288
Jaye K., Moureen C., Harada J. K., Balhorn L., Hazi J., Kemei M. C., Seshadri R. - Magnetodielectric coupling in the ilmenites MTiO3 (M = Co , Ni), Phys. Rev. B. 93 (2016) 104404.
Moghtada A., Shahrouzianfar A., Ashiri R. - Dyes and Pigments Facile synthesis of NiTiO3 yellow nano-pigments with enhanced solar radiation reflection efficiency by an innovative one-step method at low temperature, Dyes and Pigments 139 (2017) 388-396. DOI: https://doi.org/10.1016/j.dyepig.2016.12.044
Lu C., Naresh N., Kumar P. S., Som S. - Microwave-assisted solvothermal synthesis and electrochemical characterizations of ternary perovskite NiTiO3 anode materials for lithium-ion batteries, Ceramics International, 2019. DOI: https://doi.org/10.1016/j.ceramint.2019.06.057
Lerch M., Boysen H., Neder R., Frey F., Laqua W. - Neutron scattering investigation of the high temperature phase transition in NiTiO3, Journal of Physics and Chemistry of Solids 53 (1992) 1153-1156. DOI: https://doi.org/10.1016/0022-3697(92)90032-9
Shu X., He J., Chen D. - Visible-Light-Induced Photocatalyst Based on Nickel Titanate Nanoparticles 2 (2008) 4750-4753. DOI: https://doi.org/10.1021/ie071619d
Sadjadi M. S., Mozaffari M., Enhessari M., Zare K. - Effects of NiTiO3 nanoparticles supported by mesoporous MCM-41 on photoreduction of methylene blue under UV and visible light irradiation, Superlattices and Microstructures 47 (2010) 685-694. DOI: https://doi.org/10.1016/j.spmi.2010.02.007
El-Maghrabi H. H., Nada A. A., Diab K. R., Youssef A. M., Hamdy A., Roualdes S., Abd El-Wahab S. - Facile fabrication of NiTiO3/graphene nanocomposites for photocatalytic hydrogen generation, Journal of Photochemistry and Photobiology A: Chemistry 365 (2018) 86-93. DOI: https://doi.org/10.1016/j.jphotochem.2018.07.040
Acharya T., Choudhary R. N. P. - Structural, Ferroelectric, and Electrical Properties of NiTiO3 Ceramic, Journal of Electronic Materials 44 (2014) 271-280.
Van Uitert L. G., Sherwood R. C., Williams H. J., Rubin J. J., Bonner W. A. - Magnetic properties of a number of divalent transition metal tungstates, molybdates and titanates, Journal of Physics and Chemistry of Solids 25 (1964) 1447-1451. DOI: https://doi.org/10.1016/0022-3697(64)90060-5
Yuvaraj S., Nithya V. D., Fathima K. S., Sanjeeviraja C., Selvan G. K., Arumugam S., Selvan R. K. - Investigations on the temperature dependent electrical and magnetic properties of NiTiO3 by molten salt synthesis, Materials Research Bulletin 48 (2013) 1110-1116. DOI: https://doi.org/10.1016/j.materresbull.2012.12.001
He X., Wang F., Liu H., Li J., Niu L. - Synthesis and coloration of highly dispersed NiTiO3@ TiO2 yellow pigments with core-shell structure, Journal of the European Ceramic Society 37 (2017) 2965-2972. DOI: https://doi.org/10.1016/j.jeurceramsoc.2017.03.020
Acharya R. N. P., T. and Choudhary - Structural, Ferroelectric, and Electrical Properties of NiTiO3 Ceramic, Journal of Electronic Materials 44 (2015) 271-280. DOI: https://doi.org/10.1007/s11664-014-3426-5
Ruiz-Preciado M. A., Kassiba A., Gibaud A., Morales-Acevedo A. - Comparison of nickel titanate (NiTiO3) powders synthesized by sol-gel and solid state reaction, Materials Science in Semiconductor Processing 37 (2015) 171-178. DOI: https://doi.org/10.1016/j.mssp.2015.02.063
Lopes K. P., Cavalcante L. S., Sim A. Z., Varela J. A., Longo E., Leite E. R. - NiTiO3 powders obtained by polymeric precursor method: Synthesis and characterization, Journal of Alloys and Compounds 468 (2009) 327-332. DOI: https://doi.org/10.1016/j.jallcom.2007.12.085
Danks A. E., Hall S. R., Schnepp Z. - The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis, Materials Horizons 3 (2016) 91-112. DOI: https://doi.org/10.1039/C5MH00260E
Van Thang P., D. D. Dung, Bac L. H., Hung P. P., Ngoc T. V. Di. - Structural, Optical, Ferroelectric and Magnetic Properties of NiTiO3 Ceramic Synthesized by Citrate Gel Method, International Journal of Nanoscience 20 (2021) 1-7. DOI: https://doi.org/10.1142/S0219581X21500046
Rout S. K., Hussian A., Lee J. S., Kim I. W., Woo S. I. - Impedance spectroscopy and morphology of SrBi4Ti4O15 ceramics prepared by soft chemical method, Journal of Alloys and Compounds 477 (2009) 706-711. DOI: https://doi.org/10.1016/j.jallcom.2008.10.125
Pu Y., Dong Z., Zhang P., Wu Y., Zhao J., Luo Y. - Dielectric, complex impedance and electrical conductivity studies of the multiferroic Sr2FeSi2O7-crystallized glass-ceramics, Journal of Alloys and Compounds 672 (2016) 64-71. DOI: https://doi.org/10.1016/j.jallcom.2016.02.137
Jonscher A. K. - The ’universal’dielectric response, Nature 267 (1977) 673-679. DOI: https://doi.org/10.1038/267673a0
Funke K. - Jump relaxation in solid electrolytes, Progress in Solid State Chemistry 22 (1993) 111-195. DOI: https://doi.org/10.1016/0079-6786(93)90002-9
Tian F., Ohki Y. - Electric modulus powerful tool for analyzing dielectric behavior, IEEE Transactions on Dielectrics and Electrical Insulation 21 (2014) 929-931. DOI: https://doi.org/10.1109/TDEI.2014.6832233
Lanfredi S., Gênova D. H. M., Brito I. A. O., Lima A. R. F., Nobre M. A. L. - Structural characterization and Curie temperature determination of a sodium strontium niobate ferroelectric nanostructured powder, Journal of Solid State Chemistry 184 (2011) 990-1000. DOI: https://doi.org/10.1016/j.jssc.2011.03.001
West L. L., Hench J. K. - Principles of Electronic Ceramics, Wiley-Interscience; 1st edition, 1990.
Anderson J. C. - Dielectrics, London: Chapman and Hall, 1964.
Bamzai K. K., Gupta V., Kotru P. N., Wanklyn B. M. - Dielectric and A.C conductivity behaviour of flux grown Nickel titanate (NiTiO3) crystal, Ferroelectrics 413 (2011) 328-341. DOI: https://doi.org/10.1080/00150193.2011.531217
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.