Structural, electrical and ferroelectric properties of NiTiO3 synthesized by citrate-gel method

Chu Duc Viet, Nguyen Tuyet Nga, Do Duc Tho, Tran Vu Diem Ngoc, Nguyen Van Dung, Luong Huu Bac
Author affiliations

Authors

  • Chu Duc Viet School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Ha Noi, Viet Nam
  • Nguyen Tuyet Nga School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Ha Noi, Viet Nam
  • Do Duc Tho School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Ha Noi, Viet Nam
  • Tran Vu Diem Ngoc School of Materials Science and Engineering, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Ha Noi, Viet Nam
  • Nguyen Van Dung School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Ha Noi, Viet Nam
  • Luong Huu Bac School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/16212

Keywords:

citrate gel method, Impedance control, dielectric properties, electrical conductivity

Abstract

We carried out the study on NiTiO3 synthesized via citrate-gel method. Structural characteristics were determined by  XRD and SEM. The impedance spectra analysis was used to elucidate the dependence of complex impedance values on temperature and frequency. The correlation between DC-conductivity and the inverse temperature values was presented and it complied with semiconductor behavior of Arrhenius type. The real dielectric constant, dielectric loss and  AC-conductivity values were reported as a function of frequency ranging from 1 kHz to 10 MHz. Conductivity was found to obey Jonscher’s power law of conductivity. The NiTiO3 samples showed the ferroelectric behavior at room temperature.

Downloads

Download data is not yet available.

References

JingP. , LanW. , SuQ. , YuM. , Xie E. - Visible-Light Photocatalytic Activity of Novel NiTiO3 Nanowires with Rosary-Like Shape, Science of Advanced Materials 6 (2014) 434–440. DOI: https://doi.org/10.1166/sam.2014.1735

Wang Z., Wang Z., Yang W., Peng R., Lu Y. - Carbon-tolerant solid oxide fuel cells using NiTiO3 as an anode internal reforming layer, Journal of Power Sources 255 (2014) 404-409. DOI: https://doi.org/10.1016/j.jpowsour.2014.01.014

Della Gaspera E., Pujatti M., Guglielmi M., Post M. L., Martucci A. - Structural evolution and hydrogen sulfide sensing properties of NiTiO3–TiO2 sol–gel thin films containing Au nanoparticles, Materials Science and Engineering: B. 176 (2011) 716-722. DOI: https://doi.org/10.1016/j.mseb.2011.02.027

Huo K., Li Y., Chen R., Gao B., Peng C., Zhang W., Hu L., Zhang X., Chu P. K. - Recyclable non-enzymatic glucose sensor based on Ni/NiTiO3/TiO2 nanotube arrays, Chem. Plus Chem. 80 (2015) 576-582. DOI: https://doi.org/10.1002/cplu.201402288

Jaye K., Moureen C., Harada J. K., Balhorn L., Hazi J., Kemei M. C., Seshadri R. - Magnetodielectric coupling in the ilmenites MTiO3 (M = Co , Ni), Phys. Rev. B. 93 (2016) 104404.

Moghtada A., Shahrouzianfar A., Ashiri R. - Dyes and Pigments Facile synthesis of NiTiO3 yellow nano-pigments with enhanced solar radiation reflection efficiency by an innovative one-step method at low temperature, Dyes and Pigments 139 (2017) 388-396. DOI: https://doi.org/10.1016/j.dyepig.2016.12.044

Lu C., Naresh N., Kumar P. S., Som S. - Microwave-assisted solvothermal synthesis and electrochemical characterizations of ternary perovskite NiTiO3 anode materials for lithium-ion batteries, Ceramics International, 2019. DOI: https://doi.org/10.1016/j.ceramint.2019.06.057

Lerch M., Boysen H., Neder R., Frey F., Laqua W. - Neutron scattering investigation of the high temperature phase transition in NiTiO3, Journal of Physics and Chemistry of Solids 53 (1992) 1153-1156. DOI: https://doi.org/10.1016/0022-3697(92)90032-9

Shu X., He J., Chen D. - Visible-Light-Induced Photocatalyst Based on Nickel Titanate Nanoparticles 2 (2008) 4750-4753. DOI: https://doi.org/10.1021/ie071619d

Sadjadi M. S., Mozaffari M., Enhessari M., Zare K. - Effects of NiTiO3 nanoparticles supported by mesoporous MCM-41 on photoreduction of methylene blue under UV and visible light irradiation, Superlattices and Microstructures 47 (2010) 685-694. DOI: https://doi.org/10.1016/j.spmi.2010.02.007

El-Maghrabi H. H., Nada A. A., Diab K. R., Youssef A. M., Hamdy A., Roualdes S., Abd El-Wahab S. - Facile fabrication of NiTiO3/graphene nanocomposites for photocatalytic hydrogen generation, Journal of Photochemistry and Photobiology A: Chemistry 365 (2018) 86-93. DOI: https://doi.org/10.1016/j.jphotochem.2018.07.040

Acharya T., Choudhary R. N. P. - Structural, Ferroelectric, and Electrical Properties of NiTiO3 Ceramic, Journal of Electronic Materials 44 (2014) 271-280.

Van Uitert L. G., Sherwood R. C., Williams H. J., Rubin J. J., Bonner W. A. - Magnetic properties of a number of divalent transition metal tungstates, molybdates and titanates, Journal of Physics and Chemistry of Solids 25 (1964) 1447-1451. DOI: https://doi.org/10.1016/0022-3697(64)90060-5

Yuvaraj S., Nithya V. D., Fathima K. S., Sanjeeviraja C., Selvan G. K., Arumugam S., Selvan R. K. - Investigations on the temperature dependent electrical and magnetic properties of NiTiO3 by molten salt synthesis, Materials Research Bulletin 48 (2013) 1110-1116. DOI: https://doi.org/10.1016/j.materresbull.2012.12.001

He X., Wang F., Liu H., Li J., Niu L. - Synthesis and coloration of highly dispersed NiTiO3@ TiO2 yellow pigments with core-shell structure, Journal of the European Ceramic Society 37 (2017) 2965-2972. DOI: https://doi.org/10.1016/j.jeurceramsoc.2017.03.020

Acharya R. N. P., T. and Choudhary - Structural, Ferroelectric, and Electrical Properties of NiTiO3 Ceramic, Journal of Electronic Materials 44 (2015) 271-280. DOI: https://doi.org/10.1007/s11664-014-3426-5

Ruiz-Preciado M. A., Kassiba A., Gibaud A., Morales-Acevedo A. - Comparison of nickel titanate (NiTiO3) powders synthesized by sol-gel and solid state reaction, Materials Science in Semiconductor Processing 37 (2015) 171-178. DOI: https://doi.org/10.1016/j.mssp.2015.02.063

Lopes K. P., Cavalcante L. S., Sim A. Z., Varela J. A., Longo E., Leite E. R. - NiTiO3 powders obtained by polymeric precursor method: Synthesis and characterization, Journal of Alloys and Compounds 468 (2009) 327-332. DOI: https://doi.org/10.1016/j.jallcom.2007.12.085

Danks A. E., Hall S. R., Schnepp Z. - The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis, Materials Horizons 3 (2016) 91-112. DOI: https://doi.org/10.1039/C5MH00260E

Van Thang P., D. D. Dung, Bac L. H., Hung P. P., Ngoc T. V. Di. - Structural, Optical, Ferroelectric and Magnetic Properties of NiTiO3 Ceramic Synthesized by Citrate Gel Method, International Journal of Nanoscience 20 (2021) 1-7. DOI: https://doi.org/10.1142/S0219581X21500046

Rout S. K., Hussian A., Lee J. S., Kim I. W., Woo S. I. - Impedance spectroscopy and morphology of SrBi4Ti4O15 ceramics prepared by soft chemical method, Journal of Alloys and Compounds 477 (2009) 706-711. DOI: https://doi.org/10.1016/j.jallcom.2008.10.125

Pu Y., Dong Z., Zhang P., Wu Y., Zhao J., Luo Y. - Dielectric, complex impedance and electrical conductivity studies of the multiferroic Sr2FeSi2O7-crystallized glass-ceramics, Journal of Alloys and Compounds 672 (2016) 64-71. DOI: https://doi.org/10.1016/j.jallcom.2016.02.137

Jonscher A. K. - The ’universal’dielectric response, Nature 267 (1977) 673-679. DOI: https://doi.org/10.1038/267673a0

Funke K. - Jump relaxation in solid electrolytes, Progress in Solid State Chemistry 22 (1993) 111-195. DOI: https://doi.org/10.1016/0079-6786(93)90002-9

Tian F., Ohki Y. - Electric modulus powerful tool for analyzing dielectric behavior, IEEE Transactions on Dielectrics and Electrical Insulation 21 (2014) 929-931. DOI: https://doi.org/10.1109/TDEI.2014.6832233

Lanfredi S., Gênova D. H. M., Brito I. A. O., Lima A. R. F., Nobre M. A. L. - Structural characterization and Curie temperature determination of a sodium strontium niobate ferroelectric nanostructured powder, Journal of Solid State Chemistry 184 (2011) 990-1000. DOI: https://doi.org/10.1016/j.jssc.2011.03.001

West L. L., Hench J. K. - Principles of Electronic Ceramics, Wiley-Interscience; 1st edition, 1990.

Anderson J. C. - Dielectrics, London: Chapman and Hall, 1964.

Bamzai K. K., Gupta V., Kotru P. N., Wanklyn B. M. - Dielectric and A.C conductivity behaviour of flux grown Nickel titanate (NiTiO3) crystal, Ferroelectrics 413 (2011) 328-341. DOI: https://doi.org/10.1080/00150193.2011.531217

Downloads

Published

23-03-2022

How to Cite

[1]
C. D. Viet, N. T. Nga, D. D. . Tho, T. V. D. Ngoc, N. V. . Dung, and L. H. Bac, “Structural, electrical and ferroelectric properties of NiTiO3 synthesized by citrate-gel method”, Vietnam J. Sci. Technol., vol. 60, no. 2, pp. 245–256, Mar. 2022.

Issue

Section

Materials