Degradation of antibiotic sulfamethoxazole in aqueous media by UVA/TiO2 pure-brookite photocatalysis
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/16109Keywords:
TiO2 brookite, nanoparticle, Sulfamethoxazole, photodegradation, water treatmentAbstract
The appearance of antibiotic sulfamethoxazole (SMX) in natural environments poses a potential risk to human health and ecology. Among many developed treatment techniques to remove and degrade SMX from an aqueous environment, photodegradation using the phase-pure TiO2 nanoparticles (NPs) in brookite structure as an active photocatalyst could be considered as a novel and effective strategy. The photocatalytic degradation of SMX in aqueous media followed an apparent first-order kinetics under the simulated UV-A irradiation. The higher the photocatalysts load, the higher photocatalytic efficiency. The SMX photodegradation over brookite nanoparticles depended on the pH of the SMX solution that was related to changes in chemical isomers of SMX molecules in the range of pH values between 2.0 and 10.0. The degradation efficiency was highest at pH 10.0 (up to 88 % after 180 min under UV-A irradiation) when SMX was in anionic form. With real matrices, the presence of metal ions (in mineral water) and fact-finding organic matter (in surface water) had a small effect on photodegradation efficiency due to either the complexation between SMX with metal ions or the inhibition of free radicals. The obtained results confirmed that the nano-sized TiO2 brookite photocatalyst has a high potential for water and wastewater remediation.Downloads
References
Abellán M. N., Bayarri B., Giménez J. and Costa J. - Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2, Appl. Catal. B: Environ. 74 (2007) 233-241. https://doi.org/10.1016/j.apcatb.2007.02.017 DOI: https://doi.org/10.1016/j.apcatb.2007.02.017
Ninwiwek N., Hongsawat P., Punyapalakul P. and Prarat P. - Removal of the antibiotic sulfamethoxazole from environmental water by mesoporous silica-magnetic graphene oxide nanocomposite technology: Adsorption characteristics, coadsorption and uptake mechanism, Colloids Surf. A: Physicochem. Eng. Asp. 580 (2019) 123716-123728. https://doi.org/10.1016/j.colsurfa.2019.123716 DOI: https://doi.org/10.1016/j.colsurfa.2019.123716
Paula P., Manuela C., Maria J. F., Ana S., Manuela C., Joana V., Sandra J., Jaime G. S., Cristina F. and Cristina D. M. - Assessment of 83 pharmaceuticals in WWTP influent and effluent samples by UHPLC-MS/MS: Hourly variation, Sci. Total Environ. 648 (2019) 582-600. https://doi.org/10.1016/j.scitotenv.2018.08.129 DOI: https://doi.org/10.1016/j.scitotenv.2018.08.129
Trovó A. G., Raquel F. P. N., Ana A., Carla S. and Amadeo R. F. - Photodegradation of sulfamethoxazole in various aqueous media: Persistence, toxicity and photoproducts assessment, Chemosphere 77 (2009) 1292-1298. https://doi.org/10.1016/j.chemosphere.2009.09.065 DOI: https://doi.org/10.1016/j.chemosphere.2009.09.065
Chau N. D. G., Zita S., Fabrice R., Ingrid R., Quang H. M. and Wulf A. - Occurrence and Dissipation of the Antibiotics Sulfamethoxazole, Sulfadiazine, Trimethoprim, and Enrofloxacin in the Mekong Delta, Vietnam, PLoS One 10 (2015) e0131855-e0131855. https://doi.org/10.1371/journal.pone.0131855 DOI: https://doi.org/10.1371/journal.pone.0131855
Kim H. and Homan M. - Evaluation of pharmaceuticals and personal care products (PPCPs) in drinking water originating from Lake Erie, J. Great Lakes Res. 46 (2020) 1321-1330. https://doi.org/10.1016/j.jglr.2020.06.019 DOI: https://doi.org/10.1016/j.jglr.2020.06.019
Zhang T., Wang X. and Zhang X. - Recent Progress in TiO2-Mediated Solar Photocatalysis for Industrial Wastewater Treatment, Int. J. Photoenergy. 2014 (2014) 607954-60766. https://doi.org/10.1155/2014/607954 DOI: https://doi.org/10.1155/2014/607954
Colmenares J. C. and Luque R. - Heterogeneous photocatalyticnanomaterials: prospects and challenges in selective transformations of biomass-derived compounds, Chem. Soc. Rev. 43 (2014) 765-778. https://doi.org/10.1039/C3CS60262A DOI: https://doi.org/10.1039/C3CS60262A
Andreozzi R., Caprio V., Insola A. and Marotta R. - Advanced oxidation processes (AOP) for water purification and recovery, Catal. Today 53 (1999) 51-59. https://doi.org/10.1016/S0920-5861(99)00102-9 DOI: https://doi.org/10.1016/S0920-5861(99)00102-9
Yaqoob A. A., Parveen T., Umar K. and Ibrahim M. N. M., Role of Nanomaterials in the Treatment of Wastewater: A Review, Water 12 (2020) 495-525. https://doi.org/10.3390/w12020495 DOI: https://doi.org/10.3390/w12020495
Tran T. T. H., Hendrik K., Muhammad F. I., Christine F. U. B., Vuong T. H., Nguyen Q. L. and Axel S. - Photocatalytic Performance of Highly Active Brookite in the Degradation of Hazardous Organic Compounds Compared to Anatase and Rutile, Appl. Catal. B Environ. 200 (2017) 647-658. https://doi.org/10.1016/j.apcatb.2016.07.017 DOI: https://doi.org/10.1016/j.apcatb.2016.07.017
Tran T. T. H., Bui T. T. H., Nguyen T. L., Man H. N. and Tran T. K. C. - Phase-Pure Brookite TiO2 as a Highly Active Photocatalyst for the Degradation of Pharmaceutical Pollutants, J. Electron Mater. 48 (2019) 7846-7861. https://doi.org/10.1007/s11664-019-07602-y DOI: https://doi.org/10.1007/s11664-019-07602-y
Tran T. T. H., Tran T. K. C., Nguyen Q. L. and Kosslick H. - Highly active brookite TiO2-assisted photocatalytic degradation of dyes under the simulated solar−UVA radiation, Prog. Nat. Sci. Mater. Int. 29 (2019) 641-647. https://doi.org/10.1016/j.pnsc.2019.10.001 DOI: https://doi.org/10.1016/j.pnsc.2019.10.001
Bui V. H., Cam T. V., Lan A. P. T., Thao T. N., Phuong T. N., Huong M., Phuong T. L., Thanh H. N., Dao T. D., Hue N. T., Dung L. V. and Dinh B. C., - Determination of Pharmaceutical Residues by UPLC-MS/MS Method: Validation and Application on Surface Water and Hospital Wastewater, J. Anal. Methods Chem. 2021 (2021) 66282856628297. https://doi.org/10.1155/2021/6628285 DOI: https://doi.org/10.1155/2021/6628285
Niu J., Zhang L., Li Y., Jinbo Z., Sidan L. and Keqing X., - Effects of environmental factors on sulfamethoxazolephotodegradation under simulated sunlight irradiation: Kinetics and mechanism, J. Environ. Sci. 25 (2013) 1098-1106. https://doi.org/10.1016/S1001-0742(12)60167-3 DOI: https://doi.org/10.1016/S1001-0742(12)60167-3
García-Galán M. J., Díaz-Cruz S. and Barcelo D. - Combining chemical analysis and ecotoxicity to determine environmental exposure and to assess risk from sulfonamides, Trends Anal. Chem. - TrAC 28 (2009) 804-819. https://doi.org/10.1016/j.trac.2009.04.006 DOI: https://doi.org/10.1016/j.trac.2009.04.006
BIZI M. - Sulfamethoxazole Removal from Drinking Water by Activated Carbon: Kinetics and Diffusion, Process. Mol. 25 (2020) 4656-4674.
http://dx.doi.org/10.3390/molecules25204656 DOI: https://doi.org/10.3390/molecules25204656
Nguyen T. B., Huang C. P., Doong R., Chen C. W. and Cheng D. - Visible-light photodegradation of sulfamethoxazole (SMX) over Ag-P-codoped g-C3N4 (Ag-P@UCN) photocatalyst in water, Chem. Eng. J. 384 (2020) 123383-123396.
https://doi.org/10.1016/j.cej.2019.123383 DOI: https://doi.org/10.1016/j.cej.2019.123383
Oosthuizen M. M. J. and Greyling D. - Hydroxyl radical generation: the effect of bicarbonate, dioxygen and buffer concentration on pH-dependent chemiluminescence, Redox Rep. 6 (2001) 105-116. https://doi.org/10.1179/135100001101536111 DOI: https://doi.org/10.1179/135100001101536111
Ioannidou E., Frontistis Z., Antonopoulou M., Venieric D., Konstantinoud I., Dimitris I. K. and Mantzavinosa D. - Solar photocatalytic degradation of sulfamethoxazole over tungsten – Modified TiO2, Chem. Eng. J. 318 (2017) 143-152.
https://doi.org/10.1016/j.cej.2016.06.012 DOI: https://doi.org/10.1016/j.cej.2016.06.012
Negishi N., Miyazaki Y., Kato S. and Yang Y. - Effect of HCO3− concentration in groundwater on TiO2 photocatalytic water purification, Appl. Catal. B Environ. 242 (2019) 449-459. https://doi.org/10.1016/j.apcatb.2018.10.022 DOI: https://doi.org/10.1016/j.apcatb.2018.10.022
Oliveira C., Lima D. L. D., Silva C. P., Silva C. P., Calisto V. and Otero M., Esteves V. - Photodegradation of sulfamethoxazole in environmental samples: The role of pH, organic matter and salinity, Sci. Total Environ. 648 (2019)1403-1410. DOI: https://doi.org/10.1016/j.scitotenv.2018.08.235
ttps://doi.org/10.1016/j.scitotenv.2018.08.235
Xue W., Li F. and Zhou Q. - Degradation mechanisms of sulfamethoxazole and its induction of bacterial community changes and antibiotic resistance genes in a microbial fuel cell, Bioresour. Technol. 289 (2019) 121632-121640.
https://doi.org/10.1016/j.biortech.2019.121632 DOI: https://doi.org/10.1016/j.biortech.2019.121632
Li S., Zhu X., Yu H., Wang X., Liu X., Yang H., Li F. and Zhou Q. - Simultaneous sulfamethoxazole degradation with electricity generation by microbial fuel cells using Ni-MOF-74 as cathode catalysts and quantification of antibiotic resistance genes, Environ. Res. 197 (2021) 111054-111066. https://doi.org/10.1016/j.envres.2021.111054 DOI: https://doi.org/10.1016/j.envres.2021.111054
Adil S., Maryam B., Kim E. J. and Dulova N. - Individual and simultaneous degradation of sulfamethoxazole and trimethoprim by ozone, ozone/hydrogen peroxide and ozone/persulfate processes: A comparative study, Environ. Res. 189 (2020) 109889-109899. https://doi.org/10.1016/j.envres.2020.109889 DOI: https://doi.org/10.1016/j.envres.2020.109889
Du J., Guo W., Li X., Li Q., Wang B., Huang Y., Ren N. - Degradation of sulfamethoxazole by a heterogeneous Fenton-like system with microscale zero-valentiron: Kinetics, effect factors, and pathways, J. Taiwan Inst. Chem. Eng. 81 (2017) 232-238. https://doi.org/10.1016/j.jtice.2017.10.017 DOI: https://doi.org/10.1016/j.jtice.2017.10.017
Ray S. K., Dhakal D. and Lee S. W. Insight into sulfamethoxazole degradation, mechanism, and pathways by AgBr-BaMoO4 composite photocatalyst, J. Photochem. Photobiol. A Chem. 364 (2017) 686-695.
https://doi.org/10.1016/j.jphotochem.2018.07.007 DOI: https://doi.org/10.1016/j.jphotochem.2018.07.007
Zanella R., Avella E., Ramírez-Zamora R. M., Castillón-Barraza F. and Durán-Álvarez J. C. - Enhanced photocatalytic degradation of sulfamethoxazole by deposition of Au, Ag and Cu metallic nanoparticles on TiO2, Environ. Technol. 39 (2018) 2353-2364. https://doi.org/10.1080/09593330.2017.1354926 DOI: https://doi.org/10.1080/09593330.2017.1354926
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.