Investigating performance of full-cell using NaFe0.45Cu0.05Co0.5O2 cathode and hard carbon anode
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/16040Keywords:
full-cell, hard carbon, Na-ion batteries, NaFe0.45Cu0.05Co0.5O2, presodiatedAbstract
We evaluated methods aimed at improving the performance of full-cell including: i) Presodiating HC by discharging to 0.1 V in half-cell; ii) Presodiating HC by contacting with Na metal; iii) Activating by low current charging at a rate of C/20 initially, iv) Constant current charging to a cutoff voltage of 3.95 V then hold the voltage for 6 hours. The results showed that the cell being charged by low current density did not exhibit feasible work while the cell (iv) displayed an improvement in capacity while the cell (i) and the cell (ii) both are better in terms of Coulombic efficiency.
Downloads
References
Amine K., Kanno R. and Tzeng Y. - Rechargeable lithium batteries and beyond: Progress, challenges, and future directions, MRS Bull. 39 (2014) 395-401. https://doi.org/10.1557/mrs.2014.62. DOI: https://doi.org/10.1557/mrs.2014.62
Nayak P.K., Yang L., Brehm W., and Adelhelm P. - From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises, Angew. Chem. Int. Ed. 57 (2018) 102-120. https://doi.org/10.1002/anie.201703772. DOI: https://doi.org/10.1002/anie.201703772
Nitta N., Wu F., Lee J.T. and Yushin G. - Li-ion battery materials: present and future, Mater. Today 18 (2015) 252-264. https://doi.org/10.1016/j.mattod.2014.10.040. DOI: https://doi.org/10.1016/j.mattod.2014.10.040
Niu Y. B., Yin Y. X.. and Guo Y. G. - Nonaqueous sodium‐ion full cells: Status, strategies, and prospects, Small. 15 (2019) 1900233.https://doi.org/10.1002/smll.201900233. DOI: https://doi.org/10.1002/smll.201900233
Hwang J. Y., Myung S. T. and Sun Y. K. - Sodium-ion batteries: present and future, Chem. Soc. Rev. 46 (2017) 3529-3614. https://doi.org/10.1039/C6CS00776G. DOI: https://doi.org/10.1039/C6CS00776G
Yabuuchi N. , Kubota K. , Dahbi M. and Komaba S. - Research development on sodium-ion batteries, Chem. Rev. 114 (2014) 11636-11682. https://doi.org/10.1021/cr500192f. DOI: https://doi.org/10.1021/cr500192f
Liu Q., Hu Z., Chen M., Zou C., Jin H., Wang S., Chou S. and DouS. - Recent progress of layered transition metal oxide cathodes for sodium‐ion batteries, Small. 15 (2019) 1805381. https://doi.org/10.1002/smll.201805381. DOI: https://doi.org/10.1002/smll.201805381
Fang Y., Xiao L., Chen Z., Ai X., Cao Y. and Yang H. - Recent advances in sodium-ion battery materials, Electrochem. Energy Rev. 1 (2018) 294-323. https://doi.org/10.1007/s41918-018-0008-x. DOI: https://doi.org/10.1007/s41918-018-0008-x
Liu Y., Liu X., Wang T., Fan L. Z. and Jiao L. - Research and application progress on key materials for sodium-ion batteries, Sustain. Energy Fuels. 1 (2017) 986-1006. https://doi.org/10.1039/C7SE00120G. DOI: https://doi.org/10.1039/C7SE00120G
Kim H., Kim H., Ding Z., Lee M.H., Lim K., Yoon G. and Kang K. - Recent progress in electrode materials for sodium-ion batteries, Adv. Energy Mater. 6 (2016) 1600943. https://doi.org/10.1002/aenm.201600943. DOI: https://doi.org/10.1002/aenm.201600943
Wang H., Liao X. Z., Yang Y., Yan X., He Y. S., and Ma Z. F. - Large-scale synthesis of NaNi1/3Fe1/3Mn1/3O2 as high-performance cathode materials for sodium-ion batteries, J. Electrochem. Soc. 163 (2016) A565-A570. https://doi.org/10.1149/2.0011605jes. DOI: https://doi.org/10.1149/2.0011605jes
Jeong M., Lee H., Yoon J. and Yoon W. S. - O3-type NaNi1/3Fe1/3Mn1/3O2 layered cathode for Na-ion batteries: Structural evolution and redox mechanism upon Na (de) intercalation, J. Power Sources. 439 (2019) 227064.
https://doi.org/10.1016/j.jpowsour.2019.227064. DOI: https://doi.org/10.1016/j.jpowsour.2019.227064
Zhou D., Huang W., Zhao F. and Lv X. - The effect of Na content on the electrochemical performance of the O3-type NaxFe0.5Mn0.5O2 for sodium-ion batteries, J. Mater. Sci. 54 (2019) 7156–7164. https://doi.org/10.1007/s10853-018-03277-8. DOI: https://doi.org/10.1007/s10853-018-03277-8
Yoshida H., Yabuuchi N. and Komaba S. - NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries, Electrochem. Commun. 34 (2013) 60-63. https://doi.org/10.1016/j.elecom.2013.05.012. DOI: https://doi.org/10.1016/j.elecom.2013.05.012
Thorne J. S., Dunlap R. A., and Obrovac M. N. - Structure and electrochemistry of NaxFexMn1-xO2 (1.0≤ x≤ 0.5) for Na-ion battery positive electrodes, J. Electrochem. Soc. 160 (2013) A361-A367. https://doi.org/10.1149/2.058302jes. DOI: https://doi.org/10.1149/2.058302jes
Yabuuchi N., Kajiyama M., Iwatate J., Nishikawa H., Hitomi S., Okuyama, R., Usui R., Yamada Y. and Komaba S. - P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries, Nat. Mater. 11 (2012) 512-517. https://doi.org/10.1038/nmat3309. DOI: https://doi.org/10.1038/nmat3309
Yao H. R., Wang P. F., Wang Y., Yu X., Yin Y. X., and Guo Y. G. - Excellent comprehensive performance of Na-based layered oxide benefiting from the synergetic contributions of multimetal ions, Adv. Energy Mater. 7 (2017) 1700189. https://doi.org/10.1002/aenm.201700189. DOI: https://doi.org/10.1002/aenm.201700189
Mariyappan S., Marchandier T., Rabuel F., Iadecola A., Rousse G., Morozov A. V., Abakumov A. M., and Tarascon J. M. - The role of divalent (Zn2+/Mg2+/Cu2+) substituents in achieving full capacity of sodium layered oxides for Na-ion battery applications, Chem. Mater. 32 (2020) 1657-1666. https://doi.org/10.1021/acs.chemmater.9b05205. DOI: https://doi.org/10.1021/acs.chemmater.9b05205
Yang L., Li X., Liu J., Xiong S., Ma X., Liu P., Bai J., Xu W., Tang Y., Hu Y. Y., Liu M. and Chen H. - Lithium-doping stabilized high-performance P2-Na0.66Li0.18Fe0.12Mn0.7O2 cathode for sodium ion batteries, J. Am. Chem. Soc. 141 (2019) 6680-6689. https://doi.org/10.1021/jacs.9b01855. DOI: https://doi.org/10.1021/jacs.9b01855
Rong X., Qi X., Lu Y., Wang Y., Li Y., Jiang L., Yang K., Gao F., Huang X., Chen L., and Hu Y. S. - A new Tin-based O3-Na0.9[Ni0.45-x/2MnxSn0.55-x/2]O2 as sodium-ion battery cathode, J. Energy Chem. 31 (2019) 132-137.
https://doi.org/10.1016/j.jechem.2018.05.019. DOI: https://doi.org/10.1016/j.jechem.2018.05.019
Li J., Wang J., He X., Zhang L., Senyshyn A., Yan B., Muehlbauer M., Cao X., Vortmann-Westhoven B., Kraft V., Liu H., Luerenbaum C., Schumacher G., Paillard E., Winter M., and Li J. - P2-Type Na0.67Mn0.8Cu0.1Mg0.1O2 as a new cathode material for sodium-ion batteries: Insights of the synergetic effects of multi-metal substitution and electrolyte optimization, J. Power Sources. 416 (2019) 184-192.
https://doi.org/10.1016/j.jpowsour.2019.01.086. DOI: https://doi.org/10.1016/j.jpowsour.2019.01.086
Van Hoang N., Minh Le N., Hue Phuong T., Van Man T., Nhan Thanh T. and My Loan Phung L. - Cu-Doped NaCu0.05Fe0.45Co0.5O2 as promising cathode material for Na-ion batteries: Synthesis and characterization, J. Solid State Electrochem. 25 (2020) 1-9. https://doi.org/10.1007/s10008-020-04851-4. DOI: https://doi.org/10.1007/s10008-020-04851-4
Chen X., Zheng Y., Liu W., Zhang C., Li S., Li J. - High-performance sodium-ion batteries with a hard carbon anode: transition from the half-cell to full-cell perspective, Nanoscale. 11 (2019) 22196-22205. https://doi.org/10.1039/C9NR07545C. DOI: https://doi.org/10.1039/C9NR07545C
Xie F., Xu Z., Guo Z., and Titirici M.-M. - Hard carbons for sodium-ion batteries and beyond, Prog. Energy. 2 (2020) 042002. https://doi.org/10.1088/2516-1083/aba5f5. DOI: https://doi.org/10.1088/2516-1083/aba5f5
Hou H., Qiu X., Wei W., Zhang Y., and Ji X. - Carbon anode materials for advanced sodium-ion batteries, Adv. Energy Mater. 7 (2017) 1602898. DOI: https://doi.org/10.1002/aenm.201602898
Jamesh M.I. and Prakash A.S. - Advancement of technology towards developing Na-ion batteries, J. Power Sources. 378 (2018) 268-300.
https://doi.org/10.1016/j.jpowsour.2017.12.053. DOI: https://doi.org/10.1016/j.jpowsour.2017.12.053
Kubota K., Asari T., Yoshida H., Yaabuuchi N., Shiiba H., Nakayama M., and Komaba S. - Understanding the structural evolution and redox mechanism of a NaFeO2-NaCoO2 solid solution for sodium-ion batteries, Adv. Funct. Mater. 26 (2016) 6047-6059. https://doi.org/10.1002/adfm.201601292. DOI: https://doi.org/10.1002/adfm.201601292
Irisarri E., Ponrouch A., and Palacin M. R. - Review-Hard carbon negative electrode materials for sodium-ion batteries, J. Electrochem. Soc. 162 (2015) A2476-A2482. https://doi.org/10.1149/2.0091514jes. DOI: https://doi.org/10.1149/2.0091514jes
Chen G., Liu Z., and Su H. - An optimal fast-charging strategy for lithium-ion batteries via an electrochemical-thermal model with intercalation-induced stresses and film growth, Energies. 13 (2020) 2388. https://doi.org/10.3390/en13092388. DOI: https://doi.org/10.3390/en13092388
Wang Z., Wang Y., Rong Y., Li Z., and Fantao L. - Study on the optimal charging method for lithium-ion batteries used in electric vehicles, Energy Procedia. 88 (2016) 1013-1017. https://doi.org/10.1016/j.egypro.2016.06.127. DOI: https://doi.org/10.1016/j.egypro.2016.06.127
Wu X., Hu C., Du J., and Sun J. - Multistage CC-CV charge method for Li-ion battery, Math. Probl. Eng. 2015 (2015) 1-10. https://doi.org/10.1155/2015/294793. DOI: https://doi.org/10.1155/2015/294793
Zhang X., Fan C., and Han S. - Improving the initial Coulombic efficiency of hard carbon-based anode for rechargeable batteries with high energy density, J. Mater. Sci. 52 (2017) 10418-10430. https://doi.org/10.1007/s10853-017-1206-3. DOI: https://doi.org/10.1007/s10853-017-1206-3
Wang H., Xiao Y., Sun C., Lai C., and Ai X. - A type of sodium-ion full-cell with layered NaNi0.5Ti0.5O2 cathode and pre-sodiated hard carbon anode, RSC Adv. 5 (2015) 106519-106522. https://doi.org/10.1039/C5RA21235A. DOI: https://doi.org/10.1039/C5RA21235A
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.