Luminescence temperature anti-quenching in CdSe/CdS core/shell and CdSe/CdS/ZnS core/double shell nanostructures

Nguyen Dieu Linh, Nguyen Thi Thuy Lieu, Nguyen Thi Minh Hien, Nguyen Xuan Nghia
Author affiliations

Authors

  • Nguyen Dieu Linh University of Science and Technology of Hanoi, 18 Hoang Quoc Viet, Ha Noi, Viet Nam
  • Nguyen Thi Thuy Lieu Posts and Telecommunications Institute of Technology, Km10 Nguyen Trai, Ha Noi, Viet Nam
  • Nguyen Thi Minh Hien Institute of Physics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Viet Nam
  • Nguyen Xuan Nghia Institute of Physics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/15778

Keywords:

core/shell nanostructure, luminescence temperature anti-quenching, interface restructuring

Abstract

Luminescence temperature anti-quenching (LTAQ) was investigated on CdSe/CdS core/shell and CdSe/CdS/ZnS core/double shell nanostructures prepared by hot injection method. They have the same core size, CdS shell thickness ranging from 1 to 5 monolayer (ML) and ZnS shell thickness of 2 ML. Temperature-dependent photoluminescence (PL) spectra of the purified core, core/shell, and core/double shell samples were comparatively investigated over a temperature range of 79 - 460 K. The LTAQ phenomenon was observed for the core/shell and core/double shell nanostructures and is reversible. The fluorescence recovery magnitude and the temperature range in which the LTAQ process occurs depends on the thickness and composition of the shell surrounding the core. Analysis of the temperature-dependent spectral characteristics shows an increase in compression strain in the CdSe core when increasing the shell thickness. The cause of the LTAQ phenomenon is attributed to the rearrangement of the atoms at the core/shell and shell/shell interfaces in the investigated nanostructures due to thermal expansions of the core and shell crystalline lattices. The linear dependence of integrated emission intensities of CdSe/CdS (1 ML) and CdSe/CdS (3 ML) samples on temperature in the ranges of 220 - 360 K and 270 - 340 K, respectively, opens up the prospect of creating temperature sensors for biomedical applications.

Downloads

Download data is not yet available.

References

Kim J. C., Rho H., Smith L. M., Jackson H. E., Lee S., Dobrowolska M. and Furdyna J. K. - Temperature-dependent micro-photoluminescence of individual CdSe self-assembled quantum dots, Appl. Phys. Lett. 75 (2) (1999) 214-216. https://doi.org/10.1063/1.124323. DOI: https://doi.org/10.1063/1.124323

Valerini D., Cretí A., Lomascolo M., Manna L., Cingolani R. and Anni M. - Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix, Phys. Rev. B, 71 (23) (2005) 235409. https://doi.org/10.1103/PhysRevB.71.235409. DOI: https://doi.org/10.1103/PhysRevB.71.235409

Donega C. M., Bode M. and Meijerink A. - Size-and temperature-dependence of exciton lifetimes in CdSe quantum dots, Phys. Rev. B 74 (8) (2006) 805320. https://doi.org/10.1103/PhysRevB.74.085320. DOI: https://doi.org/10.1103/PhysRevB.74.085320

Zhua C., Longa Zh., Wanga Q., Qiua J., Zhoua J., Zhoua D., Wua H. and Zhu R. - Insights into anti-thermal quenching of photoluminescence from SrCaGa4O8 based on defect state and application in temperature sensing, J. Lumin. 208 (2019) 284-289. https://doi.org/10.1016/j.jlumin.2018.12.063. DOI: https://doi.org/10.1016/j.jlumin.2018.12.063

Wei Y., Yang H., Gao Z., Yun X., Xing G., Zhou C. and Li G. - Anti-Thermal-Quenching Bi3+ Luminescence in a Cyan-Emitting Ba2ZnGe2O7:Bi Phosphor Based on Zinc Vacancy, Laser Photonics Rev. 15 (2021) 2000048. https://doi.org/10.1002/lpor.202000048. DOI: https://doi.org/10.1002/lpor.202000048

Lei L., Xia J., Cheng Y., Wang Y., Bai G., Xiaa H. and Xu Sh. - Enhancing negative thermal quenching effect via low-valence doping in two-dimensional confined core–shell upconversion nanocrystals, J. Mater. Chem. C 6 (2018) 11587-11592. https://doi.org/10.1039/C8TC04392B. DOI: https://doi.org/10.1039/C8TC04392B

Lei L., Chen D., Li C., Huang F., Zhang J. and Xu Sh. - Inverse thermal quenching effect in lanthanide-doped upconversion nanocrystals for anti-counterfeiting, J. Mater. Chem. C 6 (2018) 5427-5433. https://doi.org/10.1039/C8TC01433G. DOI: https://doi.org/10.1039/C8TC01433G

Wuister S. F., Houselt A. V., Donega C. M., Vanmaekelbergh D. and Meijerink A. - Temperature Antiquenching of the Luminescence from Capped CdSe Quantum Dots, Angew. Chem. Int. Ed. 43 (2004) 3029-3033. https://doi.org/10.1002/ange.200353532. DOI: https://doi.org/10.1002/anie.200353532

Chin P. T. K., Donega C. M., Bavel S. S., Meskers S. C. J., Sommerdijk N. A. J. M. and Janssen R. A. J. - Highly Luminescent CdTe/CdSe Colloidal Heteronanocrystals with Temperature-Dependent Emission Color, J. Am. Chem. Soc. 129 (48) (2007) 14880-14886. https://doi.org/10.1021/ja0738071. DOI: https://doi.org/10.1021/ja0738071

Walker G. W., Sundar V. C., Rudzinski C. M., Wun A. W., Bawendi M. G. and Nocera D. G. - Quantum-dot optical temperature probes, Appl. Phys. Lett., 83 (17) (2003) 3555-3557. https://doi.org/10.1063/1.1620686. DOI: https://doi.org/10.1063/1.1620686

Jing P., Zheng J., Ikezawa M., Liu X., Lv Sh., Kong X., Zhao J. and Masumoto Y. - Temperature-Dependent Photoluminescence of CdSe-Core CdS/CdZnS/ZnS-Multishell Quantum Dots, J. Phys. Chem. C 113 (31) (2009) 13545-13550. https://doi.org/10.1021/jp902080p. DOI: https://doi.org/10.1021/jp902080p

Ding X., Dai R. C., Zhao Z., Wang Z. P., Sun Z. Q., Zhang Z. M. and Ding Z. J. – Irreversible temperature quenching and antiquenching of photoluminescence of ZnS/CdS:Mn/ZnS quantum well quantum dots, Chem. Phys. Lett. 625 (2015) 147-150. https://doi.org/10.1016/j.cplett.2015.02.049. DOI: https://doi.org/10.1016/j.cplett.2015.02.049

Agrawal M., Rubio-Retama J., Zafeiropoulos N. E., Gaponik N., Gupta S., Cimrova V., Lesnyak V., Lopez-Cabarcos E., Tzavalas S., Rojas-Reyna R., Eychmuller A. and Stamm M. - Switchable Photoluminescence of CdTe Nanocrystals by Temperature-Responsive Microgels, Langmuir 24 (17) (2008) 9820-9824. https://doi.org/10.1021/la801347d. DOI: https://doi.org/10.1021/la801347d

Battaglia D., Li J. J., Wang Y. and Peng X. - Colloidal Two-Dimensional Systems: CdSe Quantum Shells and Wells, Angew. Chem. Int. Ed. 42 (41) (2003) 5035-5039. https://doi.org/10.1002/anie.200352120. DOI: https://doi.org/10.1002/anie.200352120

Talapin D. V., Mekis I., Go1tzinger S., Kornowski A., Benson O. and Weller H. - CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core-Shell-Shell Nanocrystals, J. Phys. Chem. B 108 (49) (2004) 18826-18831. https://doi.org/10.1021/jp046481g. DOI: https://doi.org/10.1021/jp046481g

Zhang J., Zhang X. and Zhang J. Y. - Dependence of Microstructure and Luminescence on Shell Layers in Colloidal CdSe/CdS Core/Shell Nanocrystals, J. Phys. Chem. C 114 (9) (2010) 3904-3908. https://doi.org/10.1021/jp9120194. DOI: https://doi.org/10.1021/jp9120194

Sharma A.B., Sharma S. K., Sharma M., Pandey R.K. and Reddy D.S. - Structural and optical investigation of semiconductor CdSe/CdS core–shell quantum dot thin films, Spectrochimica Acta Part A 72 (2) (2009) 285-290. https://doi.org/10.1016/j.saa.2008.09.031. DOI: https://doi.org/10.1016/j.saa.2008.09.031

Lu L., Xu X. L., Liang W. T. and Lu H. F. - Raman analysis of CdSe/CdS core–shell quantum dots with different CdS shell thickness, J. Phys.: Condens. Matter 19 (40) (2007) 406221. https://doi.org/10.1088/0953-8984/19/40/406221. DOI: https://doi.org/10.1088/0953-8984/19/40/406221

Dzhagan V. M., Valakh M. Y., Raevskaya A. E., Stroyuk A. L., Kuchmiy S. Y. and Zahn D. R. T. - Resonant Raman scattering study of CdSe nanocrystals passivated with CdS and ZnS, Nanotechnology 18 (28) (2007) 285701. https://doi.org/10.1088/0957-4484/18/28/285701. DOI: https://doi.org/10.1088/0957-4484/18/28/285701

Tschirner N., Lange H., Schliwa A., Biermann A., Thomsen C., Lambert K., Gomes R. and Hens Z. - Interfacial Alloying in CdSe/CdS Heteronanocrystals: A Raman Spectroscopy Analysis, Chem. Mater. 24 (2) (2012) 311-318. https://doi.org/10.1021/cm202947n. DOI: https://doi.org/10.1021/cm202947n

Silva A. C. A., Neto E. S. F., da Silva S. W., Morais P. C. and Dantas N. O. - Modified Phonon Confinement Model and Its Application to CdSe/CdS Core-Shell Magic-Sized Quantum Dots Synthesized in Aqueous Solution by a New Route, J. Phys. Chem. C 117 (4) (2013) 1904-1914. https://doi.org/10.1021/jp308500r. DOI: https://doi.org/10.1021/jp308500r

Todescato F., Minotto A., Signorini R., Jasieniak J. J. and Bozio R. - Investigation into the Heterostructure Interface of CdSe-Based Core-Shell Quantum Dots Using Surface-Enhanced Raman Spectroscopy, ACS Nano 7 (8) (2013) 6649-6657. https://doi.org/10.1021/nn402022z. DOI: https://doi.org/10.1021/nn402022z

Dabbousi B. O., Rodriguez-Viejo J., Mikulec F. V., Heine J. R., Mattoussi H., Ober R., Jensen K. F. and Bawendi M. G. - (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites, J. Phys. Chem. B 101 (46) (1997) 9463-9475. https://doi.org/10.1021/jp971091y. DOI: https://doi.org/10.1021/jp971091y

García-Santamaría F., Chen Y., Vela J., Schaller R. D., Hollingsworth J. A. and Klimov V. I. - Suppressed Auger Recombination in “Giant” Nanocrystals Boosts Optical Gain Performance, Nano Lett. 9 (10) (2009) 3482-3488. https://doi.org/10.1021/nl901681d. DOI: https://doi.org/10.1021/nl901681d

Liu S. M., Guo H. Q., Zhang Z. H, Li R., Chen W. and Wang Z. G. - Characterization of CdSe and CdSe/CdS core/shell nanoclusters synthesized in aqueous solution, Physica E 8 (2) (2000) 174-178. https://doi.org/10.1016/S1386-9477(99)00260-X. DOI: https://doi.org/10.1016/S1386-9477(99)00260-X

Chen X., Lou Y., Samia A. C. and Burda C. - Coherency Strain Effects on the Optical Response of Core/Shell Heteronanostructures, Nano Lett. 3 (6) (2003) 799-803. https://doi.org/10.1021/nl034243b. DOI: https://doi.org/10.1021/nl034243b

Cao L., Huang S., Lu S. and Lin J. - Effect of layer thickness on the luminescence properties of ZnS/CdS/ZnS quantum dot quantum well, J. Colloid Interf. Sci. 284 (2) (2005) 516-520. https://doi.org/10.1016/j.jcis.2004.10.066. DOI: https://doi.org/10.1016/j.jcis.2004.10.066

Xie R., Kolb U., Li J., Basche T. and Mews A. - Synthesis and Characterization of Highly Luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS Multishell Nanocrystals, J. Am. Chem. Soc. 127 (20) (2005) 7480-7488. https://doi.org/10.1021/ja042939g. DOI: https://doi.org/10.1021/ja042939g

Varshni Y. - Temperature dependence of the energy gap in semiconductors, Physica 34 (1) (1967) 149-154. https://doi.org/10.1016/0031-8914(67)90062-6. DOI: https://doi.org/10.1016/0031-8914(67)90062-6

Neeleshwar S., Chen C. L., Tsai C. B, Chen Y. Y., Chen C. C., Shyu S. G. and Seehra M. S. - Size-dependent properties of CdSe quantum dots, Phys. Rev. B 71 (20) (2005) 201307. https://doi.org/10.1103/PhysRevB.71.201307. DOI: https://doi.org/10.1103/PhysRevB.71.201307

Downloads

Published

23-02-2022

How to Cite

[1]
N. D. Linh, N. T. T. Lieu, N. T. M. Hien, and N. X. Nghia, “Luminescence temperature anti-quenching in CdSe/CdS core/shell and CdSe/CdS/ZnS core/double shell nanostructures”, Vietnam J. Sci. Technol., vol. 60, no. 1, pp. 49–60, Feb. 2022.

Issue

Section

Materials

Most read articles by the same author(s)