Fuzzy distance-based filter-wrapper incremental algorithms for attribute reduction when adding or deleting attribute set
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/59/2/15698Keywords:
Decision system, fuzzy rough set, fuzzy distance, incremental algorithm, attribute reduction, reductAbstract
Attribute reduction is a critical problem in the data preprocessing step with the aim of minimizing redundant attributes to improve the efficiency of data mining models. The fuzzy rough set theory is considered an effective tool to solve the attribute reduction problem directly on the original decision system, without data preprocessing. With the current digital transformation trend, decision systems are larger in size and updated. To solve the attribute reduction problem directly on change decision systems, a number of recent studies have proposed incremental algorithms to find reducts according to fuzzy rough set approach to reduce execution time. However, the proposed algorithms follow the traditional filter approach. Therefore, the obtained reduct is not optimal in both criteria: the number of attribute of the reducts and the accuracy of classification model. In this paper, we propose incremental algorithms that find reducts following filter-wrapper approach using fuzzy distance measure in the case of adding and deleting attribute set. The experimental results on the sample datasets show that the proposed algorithms significantly reduce the number of attributes in reduct and improve the classification accuracy compared to other algorithms using filter approachDownloads
References
D. Dübois, H. Prade, “Rough fuzzy sets and fuzzy rough sets”, International Journal of General Systems 17, pp.191-209, 1990. DOI: https://doi.org/10.1080/03081079008935107
Z. Pawlak, Rough sets: Theoretical Aspects of Reasoning about Data, Kluwer Academic Publisher, London, 1991. DOI: https://doi.org/10.1007/978-94-011-3534-4
Anoop Kumar Tiwari , Shivam Shreevastava, Tanmoy Som, K.K. Shukla, “Tolerance-based intuitionistic fuzzy-rough set approach for attribute reduction”, Expert Systems With Applications 101, pp. 205–212, 2018. DOI: https://doi.org/10.1016/j.eswa.2018.02.009
Z. Wang, Y.L. Qi, M.W. Shao, Q.H. Hu, D.G. Chen, Y.H. Qian, Y.J. Lin, “A Fitting Model for Feature Selection with Fuzzy Rough Sets”, IEEE Transactions on Fuzzy Systems, Volume: 25, Issue: 4, pp. 741-753, 2017. DOI: https://doi.org/10.1109/TFUZZ.2016.2574918
Zhang, C.L. Mei, D.G. Chen, Y.Y. Yang, “A fuzzy rough set-based feature selection method using representative instances”, Knowledge-Based Systems, Vol. 151, pp. 216-229, 2018. DOI: https://doi.org/10.1016/j.knosys.2018.03.031
T.K. Sheeja, A. Sunny Kuriakose, “A novel feature selection method using fuzzy rough sets”, Computers in Industry 97, pp. 111- 116, 2018. DOI: https://doi.org/10.1016/j.compind.2018.01.014
Y. Lin, Y. Li, C. Wang, J. Chen, “Attribute reduction for multi-label learning with fuzzy rough set”, Knowl.-Based Syst. 152, pp. 51-61, 2018. DOI: https://doi.org/10.1016/j.knosys.2018.04.004
J.H. Dai, Y.J. Yan, Z.W. Li, B.S. Liao, “Dominance-based fuzzy rough set approach for incomplete interval-valued data”, Journal of Intelligent & Fuzzy Systems 34, pp. 423-436, 2018. DOI: https://doi.org/10.3233/JIFS-17178
Q.H. Hu, D.R. Yu, Z.X. Xie, “Information-preserving hybrid data reduction based on fuzzy-rough techniques”, Pattern Recognit. Lett. 27(5), pp. 414-423, 2016. DOI: https://doi.org/10.1016/j.patrec.2005.09.004
X. Zhang, C.L. Mei, D. G. Chen, J. Li, “Feature selection in mixed data: A method using a novel fuzzy rough set-based information entropy”, Pattern Recognition 56, pp. 1-15, 2016. DOI: https://doi.org/10.1016/j.patcog.2016.02.013
C.Z. Wang, Y.Huang, M.W. Shao, X.D.Fan, “Fuzzy rough setbased attribute reduction using distance measures”, Knowledge-Based Systems, Vol. 164, 2019, pp. 205-212. DOI: https://doi.org/10.1016/j.knosys.2018.10.038
C.Z. Wang, Y. Qi, Q. He, “Attribute reduction using distancebased fuzzy rough sets”, International Conference on Machine Learning and Cybernetics, IEEE, 2015. DOI: https://doi.org/10.1109/ICMLC.2015.7340666
Cao Chinh Nghia, Demetrovics Janos, Nguyen Long Giang, Vu Duc Thi, “About a fuzzy distance between two fuzzy partitions and attribute reduction problem”, Cybernetics and Information Technologies, Vol 16, No 4, pp. 13-28, 2016 DOI: https://doi.org/10.1515/cait-2016-0064
J.H. Dai, H. Hu, W.Z. Wu,Y.H. Qian, D.B. Huang, “Maximal Discernibility Pairs Based Approach to Attribute Reduction in Fuzzy Rough Sets”, IEEE Transactions on Fuzzy Systems, Vol. 26, Issue 4, pp. 2174-2187, 2018. DOI: https://doi.org/10.1109/TFUZZ.2017.2768044
J.H. Dai, Q.H. Hu, H. Hu, D.B.Huang, “Neighbor inconsistent pair selection for attribute reduction by rough set approach”. IEEE Transactions on Fuzzy Systems, Vol. 26, Issue 2, pp. 937-950, 2017. DOI: https://doi.org/10.1109/TFUZZ.2017.2698420
L.J.Ping, Z. W. Xia, T.Z. Hui, X.Y. Fang, M. T. Yu, Z.J. Jing, Z. G. Yong, J. P. Niyoyita, “learning with fuzzy rough set-based attribute selection”, Expert Systems with Applications, Vol. 139, pp. 1- 17, 2020.
W.P. Ding, C.T. Lin, Z.H. Cao, “Deep neuro-cognitive coevolution for fuzzy attribute reduction by quantum leaping PSO with nearest-neighbor memeplexes”, IEEE Transactions on Cybernetics, 49(7):2744-2757, 2019 DOI: https://doi.org/10.1109/TCYB.2018.2834390
X.M. Liu, C. Shen, W. Wang, X.H. Guan, “CoEvil: A Coevolutionary Model for Crime Inference Based on Fuzzy Rough Feature Selection”, IEEE Transactions on Fuzzy Systems, Early Access, 2019. DOI: https://doi.org/10.1109/TFUZZ.2019.2939957
Y.J. Lin, Q.H. Hu, J.H. Liu, J.J. Li, X.D. Wu, “Streaming feature selection for multi-label learning based on fuzzy mutual information”, IEEE Transactions on Fuzzy Systems, Vol. 25, Issue 6, pp. 1491-1507, 2017. DOI: https://doi.org/10.1109/TFUZZ.2017.2735947
Demetrovics, J., Thi, V.D., & Giang, N.L. (2014). Metric Based Attribute Reduction in Dynamic Decision systems. Annales Univ. Sci. Budapest., Sect. Comp, Vol. 42, 157-172.
Huong, N. T. L., &Giang, N. L. (2016). Incremental algorithms based on metric for finding reduct in dynamic decision systems. Journal on Research and Development on Information & Communications Technology, Vol.E-3, No.9, 26-39. DOI: https://doi.org/10.32913/mic-ict-research.v3.n13.344
Y.G. Jing, T.R. Li, J.F. Huang, H.M. Chen, S.J. Horng, “A Group Incremental Reduction Algorithm with Varying Data Values”, International Journal of Intelligent Systems 32(9), pp. 900-925, 2017. DOI: https://doi.org/10.1002/int.21876
Y.G. Jing, T.R. Li, H. Fujita, Z. Yu, B. Wang, “An incremental attribute reduction approach based on knowledge granularity with a multi-granulation view”, Information Sciences 411, pp. 23-38, 2017. DOI: https://doi.org/10.1016/j.ins.2017.05.003
Zhang, C., Dai, J. & Chen, J. (2020). Knowledge granularity based incremental attribute reduction for incomplete decision systems. International Journal of Machine Learning and Cybernetics. https://doi.org/10.1007/s13042-020-01089-4.
Cai, M.J., Lang, G.M., Hamido, F., Li, Z.Y., &Yang, T. (2019). Incremental approaches to updating reducts under dynamic covering granularity. Knowledge-Based Systems 172, 130-140. DOI: https://doi.org/10.1016/j.knosys.2019.02.014
Zhang, C., &Dai, J. (2019). An incremental attribute reduction approach based on knowledge granularity for incomplete decision systems. Granular Computing, 1-15. DOI: https://doi.org/10.1007/s41066-019-00173-7
Zhang, C., Dai, J. &Chen, J. (2020). Knowledge granularity based incremental attribute reduction for incomplete decision systems. International Journal of Machine Learning and Cybernetics. https://doi.org/10.1007/s13042-020-01089-4. DOI: https://doi.org/10.1007/s13042-020-01089-4
W. Wei, X.Y. Wu, J.Y. Liang, J.B. Cui, Y.J. Sun, “Discernibility matrix based incremental attribute reduction for dynamic data”, Knowledge-Based Systems, Vol. 140, pp. 142-157, 2018. DOI: https://doi.org/10.1016/j.knosys.2017.10.033
G. Lang, Q. Li, M. Cai, T. Yang, Q. Xiao, “Incremental approaches to knowledg reduction based on characteristic matrices”, Int. J. Mach. Learn. Cybern. 8 (1) pp. 203-222, 2017. DOI: https://doi.org/10.1007/s13042-014-0315-4
Ma, F.M., Ding, M.W., Zhang, T.F., &Cao, J. (2019). Compressed binary discernibility matrix based incremental attribute reduction algorithm for group dynamic data. Neurocomputing, Vol. 344, No. 7, 20-27.
Yang, C.J., Ge, H., Li, L.S., &Ding, J. (2019). A unified incremental reduction with the variations of the object for decision tables. Soft Computing 23, 6407-6427. DOI: https://doi.org/10.1007/s00500-018-3296-5
Liu, Y., Zheng, L.D., Xiu, Y.L., Yin, H., Zhao, S.Y., Wang, X.H., Chen, H., &Li, C.P. (2020). Discernibility matrix based incremental feature selection on fused decision tables. International Journal of Approximate Reasoning 118, 1-26. DOI: https://doi.org/10.1016/j.ijar.2019.11.010
Das, A. K., Sengupta, S., & Bhattacharyya, S. (2018). A group incremental feature selection for classification using rough set theory based genetic algorithm. Applied Soft Computing, 65, 400-411. DOI: https://doi.org/10.1016/j.asoc.2018.01.040
Lang, G., Cai, M., Fujita, H., &Xiao, Q. (2018). Related families-based attribute reduction of dynamic covering decision information systems. Knowledge-Based Systems, 162, 161-173. DOI: https://doi.org/10.1016/j.knosys.2018.05.019
Hao, G., Longshu, L., Chuanjian, Y., &Jian, D. (2019).
Incremental reduction algorithm with acceleration strategy based on conflict region. Artificial Intelligence Review, 51(4), 507-536. DOI: https://doi.org/10.1007/s10462-017-9570-6
Shua, W.H., Qian, W.B., &Xie, Y.H. (2019). Incremental approaches for feature selection from dynamic data with the variation of multiple objects. Knowledge-Based Systems, Vol. 163, 320-331. DOI: https://doi.org/10.1016/j.knosys.2018.08.028
Nandhini, N., &Thangadurai, K. (2019). An incremental rough set approach for faster attribute reduction, International Journal of Information Technology. https://doi.org/10.1007/s41870-019-00326-6.
Shu, W.H., Qian, W., &Xie, Y. (2020). Incremental feature selection for dynamic hybrid data using neighborhood rough set. Knowledge-Based Systems 194, 105516. DOI: https://doi.org/10.1016/j.knosys.2020.105516
Xie, X., &Qin, X. (2018). A novel incremental attribute reduction approach for dynamic incomplete decision systems. International Journal of Approximate Reasoning, 93, 443-462. DOI: https://doi.org/10.1016/j.ijar.2017.12.002
Y.Y. Yang, D.G. Chen, H. Wang, “Active Sample Selection Based Incremental Algorithm for Attribute Reduction With Rough Sets”, IEEE Transactions on Fuzzy Systems, Vol. 25, Issue 4, pp. 825- 838, 2017. DOI: https://doi.org/10.1109/TFUZZ.2016.2581186
W.H. Shu, H. Shen, “Updating attribute reduction in incomplete decision systems with the variation of attribute set”, International Journal of Approximate Reasoning, vol. 55, no.3, pp. 867-884, 2014. DOI: https://doi.org/10.1016/j.ijar.2013.09.015
F. Wang, J.Y. Liang, Y.H. Qian, “Attribute reduction: A dimension incremental strategy”, Knowledge-Based Systems, Volume 39, pp. 95-108, 2013. DOI: https://doi.org/10.1016/j.knosys.2012.10.010
M.J. Cai, Q.G. Li, J.M. Ma, “Knowledge reduction of dynamic covering decision information systems caused by variations of attribute values”, International Journal of Machine Learning and Cybernetics 8(4), pp. 1131-1144, 2017. DOI: https://doi.org/10.1007/s13042-015-0484-9
Ma, F.M., Ding, M.W., Zhang, T.F., &Cao, J. (2019). Compressed binary discernibility matrix based incremental attribute reduction algorithm for group dynamic data. Neurocomputing, Vol. 344, No. 7, 20-27. DOI: https://doi.org/10.1016/j.neucom.2018.01.094
Wei, W., Song, P., Liang, J.Y., &Wu, X.Y. (2019). Accelerating incremental attribute reduction algorithm by compacting a decision system. International Journal of Machine Learning and Cybernetics 10, 2355-2373. DOI: https://doi.org/10.1007/s13042-018-0874-x
Nandhini, N., &Thangadurai, K. (2019). An incremental rough set approach for faster attribute reduction, International Journal of Information Technology. https://doi.org/10.1007/s41870-019-00326-6. DOI: https://doi.org/10.1007/s41870-019-00326-6
Chen, D.G., Dong, L.J., &Mi, J.H. (2020). Incremental mechanism of attribute reduction based on discernible relations for dynamically increasing attribute. Soft Computing 24, 321-332. DOI: https://doi.org/10.1007/s00500-019-04511-4
Demetrovics Janos, Nguyen Thi Lan Huong, Vu Duc Thi, Nguyen Long Giang, “Metric Based Attribute Reduction Method in Dynamic Decision Tables”, Cybernetics and Information Technologies, Vol.16, No.2, pp. 3-15, 2016. DOI: https://doi.org/10.1515/cait-2016-0016
M.S. Raza,U. Qamar, “An incremental dependency calculation technique for feature selection using rough sets”, Information Sciences 343–344, pp. 41–65, 2016. DOI: https://doi.org/10.1016/j.ins.2016.01.044
Y. Jing, T. Li, J. Huang, et al., “An incremental attribute reduction approach based on knowledge granularity under the attribute generalization”, Int. J. Approx. Reason. 76, pp.80-95, 2016. DOI: https://doi.org/10.1016/j.ijar.2016.05.001
Y.G. Jing, T.R. Li, H. Fujita, B.L. Wang, N. Cheng, “An incremental attribute reduction method for dynamic data mining”, Information Sciences 465, pp. 202-218, 2018. DOI: https://doi.org/10.1016/j.ins.2018.07.001
Y.M. Liu, S.Y. Zhao, H. Chen, C.P. Li, Y.M. Lu, “Fuzzy Rough Incremental Attribute Reduction Applying Dependency Measures”, APWeb-WAIM 2017: Web and Big Data, pp 484-492, 2017. DOI: https://doi.org/10.1007/978-3-319-63579-8_37
Y.Y. Yang, D.G. Chen, H. Wang, Eric C.C.Tsang, D.L. Zhang, “Fuzzy rough set based incremental attribute reduction from dynamic data with sample arriving”, Fuzzy Sets and Systems, Volume 312, pp. 66-86, 2017 DOI: https://doi.org/10.1016/j.fss.2016.08.001
Y.Y. Yang, D.G. Chen, H. Wang, X.H. Wang, “Incremental perspective for feature selection based on fuzzy rough sets”, IEEE Transactions on Fuzzy Systems, Vol. 26, Issue 3, pp. 1257-1273, 2017. DOI: https://doi.org/10.1109/TFUZZ.2017.2718492
Giang, N. L., Ngan, T. T., Tuan, T. M., Phuong, H. T., Abdel-Basset, M., de Macêdo, A. R. L., &Albuquerque, V. (2020). Novel Incremental Algorithms for Attribute Reduction from Dynamic Decision systems using Hybrid Filter-Wrapper with Fuzzy Partition Distance. IEEE Transactions on Fuzzy Systems, 28 (5), 858-873. DOI: https://doi.org/10.1109/TFUZZ.2019.2948586
Zhang, X., Mei, C.L., Chen, D.G., Yang, Y.Y., &Li, J.H. (2020). Active Incremental Feature Selection Using a Fuzzy-Rough-Set-Based Information Entropy. IEEE Transactions on Fuzzy Systems, Volume 28, Issue 5, 901-915. DOI: https://doi.org/10.1109/TFUZZ.2019.2959995
Ni, P., Zhao, S.Y., Wang, X.H., Chen, H., Li, C.P., Tsang, E.C.C (2020). Incremental Feature Selection Based on Fuzzy Rough Sets. Information Sciences. DOI: https://doi.org/10.1016/j.ins.2020.04.038
A.P. Zeng, T.R. Li, D. Liu, J.B. Zhang, H.M. Chen, “A fuzzy rough set approach for incremental feature selection on hybrid information systems”, Fuzzy Sets and Systems, Vol. 258, pp. 39-60, 2015. DOI: https://doi.org/10.1016/j.fss.2014.08.014
Q.H. Hu, Z.X. Xie, D.R. Yu, “Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation”, Pattern Recognition 40, pp. 3509-3521, 2007. DOI: https://doi.org/10.1016/j.patcog.2007.03.017
Y.H. Qian., J.Y. Liang, W.Z. Wu, C.Y. Dang, “Information Granularity in Fuzzy Binary GrC Model”, IEEE Trans. Fuzzy Syst. 19, No 2, pp. 253-264, 2011. DOI: https://doi.org/10.1109/TFUZZ.2010.2095461
The UCI machine learning repository, http://archive.ics.uci.edu/ml/datasets.html. https://sourceforge.net/projects/weka/.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.