Simulation of direct contact membrane distillation regeneration of liquid desiccant solutions used in air-conditioning
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/58/6/15259Keywords:
membrane distillation, liquid desiccant air conditioner, regeneration of liquid desiccant solutions, process simulationAbstract
Membrane distillation (MD) has great potential for the treatment of hyper saline waters, including liquid desiccant solutions used in air-conditioning systems. Previous experimental investigations have demonstrated the technical feasibility of MD for regeneration of liquid desiccant solutions. In this study, a direct contact membrane distillation (DCMD) process of the LiCl liquid desiccant solution was simulated using MATLAB software. The simulation was first validated using data obtained from experimental tests. Then, it was used to elucidate the water temperatures, LiCl concentration, and water flux profiles along the membrane leaf inside the DCMD membrane module. Finally, with the help of the simulation, the effects of membrane properties and process operating conditions on the DCMD process performance were systematically examined. The results obtained from this simulation enrich the knowledge and hence facilitate the realization of MD for the liquid desiccant solution regeneration application.Downloads
References
Duong H.C., Ansari A.J., Hailemariam R.H., Woo Y.C., Pham T.M., Ngo L.T., Dao D.T., and Nghiem L.D., Membrane Distillation for Strategic Water Treatment Applications: Opportunities, Challenges, and Current Status, Current Pollution Reports 6 (2020) 173-187. DOI: https://doi.org/10.1007/s40726-020-00150-8
Duong H.C., Ansari A.J., Nghiem L.D., Cao H.T., Vu T.D., and Nguyen T.P., Membrane Processes for the Regeneration of Liquid Desiccant Solution for Air Conditioning, Current Pollution Reports 5 (2019) 308-318. DOI: https://doi.org/10.1007/s40726-019-00120-9
Rezaei M., Warsinger D.M., Lienhard V J.H., Duke M.C., Matsuura T., and Samhaber W.M., Wetting phenomena in membrane distillation: Mechanisms, reversal, and prevention, Water Research 139 (2018) 329-352. DOI: https://doi.org/10.1016/j.watres.2018.03.058
Alkhudhiri A., Darwish N., and Hilal N., Membrane distillation: A comprehensive review, Desalination 287 (2012) 2-18. DOI: https://doi.org/10.1016/j.desal.2011.08.027
Li G. and Lu L., Modeling and performance analysis of a fully solar-powered stand-alone sweeping gas membrane distillation desalination system for island and coastal households, Energy Conversion and Management 205 (2020) 112375. DOI: https://doi.org/10.1016/j.enconman.2019.112375
Li Q., Beier L.-J., Tan J., Brown C., Lian B., Zhong W., Wang Y., Ji C., Dai P., Li T., Le Clech P., Tyagi H., Liu X., Leslie G., and Taylor R.A., An integrated, solar-driven membrane distillation system for water purification and energy generation, Applied Energy 237 (2019) 534-548. DOI: https://doi.org/10.1016/j.apenergy.2018.12.069
Andrés-Mañas J.A., Ruiz-Aguirre A., Acién F.G., and Zaragoza G., Assessment of a pilot system for seawater desalination based on vacuum multi-effect membrane distillation with enhanced heat recovery, Desalination 443 (2018) 110-121. DOI: https://doi.org/10.1016/j.desal.2018.05.025
Duong H.C., Xia L., Ma Z., Cooper P., Ela W., and Nghiem L.D., Assessing the performance of solar thermal driven membrane distillation for seawater desalination by computer simulation, Journal of Membrane Science 542 (2017) 133-142. DOI: https://doi.org/10.1016/j.memsci.2017.08.007
Dow N., Gray S., Li J.D., Zhang J., Ostarcevic E., Liubinas A., Atherton P., Roeszler G., Gibbs A., and Duke M., Pilot trial of membrane distillation driven by low grade waste heat: Membrane fouling and energy assessment, Desalination 391 (2016) 30-42. DOI: https://doi.org/10.1016/j.desal.2016.01.023
Duong H.C., Chivas A.R., Nelemans B., Duke M., Gray S., Cath T.Y., and Nghiem L.D., Treatment of RO brine from CSG produced water by spiral-wound air gap membrane distillation - A pilot study, Desalination 366 (2015) 121-129. DOI: https://doi.org/10.1016/j.desal.2014.10.026
Choo F.H., KumJa M., Zhao K., Chakraborty A., Dass E.T.M., Prabu M., Li B., and Dubey S., Experimental Study on the Performance of Membrane based Multi- effect Dehumidifier Regenerator Powered by Solar Energy, Energy Procedia 48 (2014) 535-542. DOI: https://doi.org/10.1016/j.egypro.2014.02.063
Zhou J., Wang F., Noor N., and Zhang X., An experimental study on liquid regeneration process of a liquid desiccant air conditioning system (LDACs) based on vacuum membrane distillation, Energy 194 (2020) 116891. DOI: https://doi.org/10.1016/j.energy.2019.116891
Gurubalan A., Maiya M.P., and Tiwari S., Experiments on a novel membrane-based liquid desiccant dehumidifier for hybrid air conditioner, International Journal of Refrigeration 108 (2019) 271-282. DOI: https://doi.org/10.1016/j.ijrefrig.2019.09.004
Lefers R., Bettahalli N.M.S., Fedoroff N., Nunes S.P., and Leiknes T., Vacuum membrane distillation of liquid desiccants utilizing hollow fiber membranes, Separation and Purification Technology 199 (2018) 57-63. DOI: https://doi.org/10.1016/j.seppur.2018.01.042
Duong H.C., Álvarez I.R.C., Nguyen T.V., and Nghiem L.D., Membrane distillation to regenerate different liquid desiccant solutions for air conditioning, Desalination 443 (2018) 137-142. DOI: https://doi.org/10.1016/j.desal.2018.05.023
Chen Q., Kum Ja M., Li Y., and Chua K.J., Thermodynamic optimization of a vacuum multi-effect membrane distillation system for liquid desiccant regeneration, Applied Energy 230 (2018) 960-973. DOI: https://doi.org/10.1016/j.apenergy.2018.09.072
Duong H.C., Hai F.I., Al-Jubainawi A., Ma Z., He T., and Nghiem L.D., Liquid desiccant lithium chloride regeneration by membrane distillation for air conditioning, Separation and Purification Technology 177 (2017) 121-128. DOI: https://doi.org/10.1016/j.seppur.2016.12.031
Gurubalan A., Maiya M.P., and Geoghegan P.J., A comprehensive review of liquid desiccant air conditioning system, Applied Energy 254 (2019) 113673. DOI: https://doi.org/10.1016/j.apenergy.2019.113673
Drioli E., Ali A., and Macedonio F., Membrane distillation: Recent developments and perspectives, Desalination 356 (2015) 56-84. DOI: https://doi.org/10.1016/j.desal.2014.10.028
Hitsov I., Maere T., De Sitter K., Dotremont C., and Nopens I., Modelling approaches in membrane distillation: A critical review, Separation and Purification Technology 142 (2015) 48-64. DOI: https://doi.org/10.1016/j.seppur.2014.12.026
Duong H.C., Cooper P., Nelemans B., Cath T.Y., and Nghiem L.D., Optimising thermal efficiency of direct contact membrane distillation by brine recycling for small-scale seawater desalination, Desalination 374 (2015) 1-9. DOI: https://doi.org/10.1016/j.desal.2015.07.009
Duong H.C., Phan N.D., Nguyen T.V., Pham T.M., and Nguyen N.C., Membrane distillation for seawater desalination applications in Vietnam: potential and challenges, Vietnam Journal of Science and Technology 55 (2017) 659-682. DOI: https://doi.org/10.15625/2525-2518/55/6/10715
Duong H.C., Ansari A.J., Cao H.T., Nguyen N.C., Do K.-U., and Nghiem L.D., Membrane distillation regeneration of liquid desiccant solution for air-conditioning: Insights into polarisation effects and mass transfer, Environmental Technology & Innovation 19 (2020) 100941. DOI: https://doi.org/10.1016/j.eti.2020.100941
Duong H.C., Duke M., Gray S., Cooper P., and Nghiem L.D., Membrane scaling and prevention techniques during seawater desalination by air gap membrane distillation, Desalination 397 (2016) 92-100. DOI: https://doi.org/10.1016/j.desal.2016.06.025
Srisurichan S., Jiraratananon R., and Fane A.G., Mass transfer mechanisms and transport resistances in direct contact membrane distillation process, Journal of Membrane Science 277 (2006) 186-194. DOI: https://doi.org/10.1016/j.memsci.2005.10.028
Duong H.C., Cooper P., Nelemans B., Cath T.Y., and Nghiem L.D., Evaluating energy consumption of air gap membrane distillation for seawater desalination at pilot scale level, Separation and Purification Technology 166 (2016) 55-62. DOI: https://doi.org/10.1016/j.seppur.2016.04.014
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.