Simulation of direct contact membrane distillation regeneration of liquid desiccant solutions used in air-conditioning

Authors

  • Hung Cong Duong School of Environmental Engineering, Le Quy Don Technical University, Hanoi, Viet Nam
  • Lan Thi Thu Tran Institute of Environmental Engineering, Vietnam Academy of Science and Technology (VAST), Hanoi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/58/6/15259

Keywords:

membrane distillation, liquid desiccant air conditioner, regeneration of liquid desiccant solutions, process simulation

Abstract

Membrane distillation (MD) has great potential for the treatment of hyper saline waters, including liquid desiccant solutions used in air-conditioning systems. Previous experimental investigations have demonstrated the technical feasibility of MD for regeneration of liquid desiccant solutions. In this study, a direct contact membrane distillation (DCMD) process of the LiCl liquid desiccant solution was simulated using MATLAB software. The simulation was first validated using data obtained from experimental tests. Then, it was used to elucidate the water temperatures, LiCl concentration, and water flux profiles along the membrane leaf inside the DCMD membrane module. Finally, with the help of the simulation, the effects of membrane properties and process operating conditions on the DCMD process performance were systematically examined. The results obtained from this simulation enrich the knowledge and hence facilitate the realization of MD for the liquid desiccant solution regeneration application.

Downloads

Download data is not yet available.

References

Duong H.C., Ansari A.J., Hailemariam R.H., Woo Y.C., Pham T.M., Ngo L.T., Dao D.T., and Nghiem L.D., Membrane Distillation for Strategic Water Treatment Applications: Opportunities, Challenges, and Current Status, Current Pollution Reports 6 (2020) 173-187. DOI: https://doi.org/10.1007/s40726-020-00150-8

Duong H.C., Ansari A.J., Nghiem L.D., Cao H.T., Vu T.D., and Nguyen T.P., Membrane Processes for the Regeneration of Liquid Desiccant Solution for Air Conditioning, Current Pollution Reports 5 (2019) 308-318. DOI: https://doi.org/10.1007/s40726-019-00120-9

Rezaei M., Warsinger D.M., Lienhard V J.H., Duke M.C., Matsuura T., and Samhaber W.M., Wetting phenomena in membrane distillation: Mechanisms, reversal, and prevention, Water Research 139 (2018) 329-352. DOI: https://doi.org/10.1016/j.watres.2018.03.058

Alkhudhiri A., Darwish N., and Hilal N., Membrane distillation: A comprehensive review, Desalination 287 (2012) 2-18. DOI: https://doi.org/10.1016/j.desal.2011.08.027

Li G. and Lu L., Modeling and performance analysis of a fully solar-powered stand-alone sweeping gas membrane distillation desalination system for island and coastal households, Energy Conversion and Management 205 (2020) 112375. DOI: https://doi.org/10.1016/j.enconman.2019.112375

Li Q., Beier L.-J., Tan J., Brown C., Lian B., Zhong W., Wang Y., Ji C., Dai P., Li T., Le Clech P., Tyagi H., Liu X., Leslie G., and Taylor R.A., An integrated, solar-driven membrane distillation system for water purification and energy generation, Applied Energy 237 (2019) 534-548. DOI: https://doi.org/10.1016/j.apenergy.2018.12.069

Andrés-Mañas J.A., Ruiz-Aguirre A., Acién F.G., and Zaragoza G., Assessment of a pilot system for seawater desalination based on vacuum multi-effect membrane distillation with enhanced heat recovery, Desalination 443 (2018) 110-121. DOI: https://doi.org/10.1016/j.desal.2018.05.025

Duong H.C., Xia L., Ma Z., Cooper P., Ela W., and Nghiem L.D., Assessing the performance of solar thermal driven membrane distillation for seawater desalination by computer simulation, Journal of Membrane Science 542 (2017) 133-142. DOI: https://doi.org/10.1016/j.memsci.2017.08.007

Dow N., Gray S., Li J.D., Zhang J., Ostarcevic E., Liubinas A., Atherton P., Roeszler G., Gibbs A., and Duke M., Pilot trial of membrane distillation driven by low grade waste heat: Membrane fouling and energy assessment, Desalination 391 (2016) 30-42. DOI: https://doi.org/10.1016/j.desal.2016.01.023

Duong H.C., Chivas A.R., Nelemans B., Duke M., Gray S., Cath T.Y., and Nghiem L.D., Treatment of RO brine from CSG produced water by spiral-wound air gap membrane distillation - A pilot study, Desalination 366 (2015) 121-129. DOI: https://doi.org/10.1016/j.desal.2014.10.026

Choo F.H., KumJa M., Zhao K., Chakraborty A., Dass E.T.M., Prabu M., Li B., and Dubey S., Experimental Study on the Performance of Membrane based Multi- effect Dehumidifier Regenerator Powered by Solar Energy, Energy Procedia 48 (2014) 535-542. DOI: https://doi.org/10.1016/j.egypro.2014.02.063

Zhou J., Wang F., Noor N., and Zhang X., An experimental study on liquid regeneration process of a liquid desiccant air conditioning system (LDACs) based on vacuum membrane distillation, Energy 194 (2020) 116891. DOI: https://doi.org/10.1016/j.energy.2019.116891

Gurubalan A., Maiya M.P., and Tiwari S., Experiments on a novel membrane-based liquid desiccant dehumidifier for hybrid air conditioner, International Journal of Refrigeration 108 (2019) 271-282. DOI: https://doi.org/10.1016/j.ijrefrig.2019.09.004

Lefers R., Bettahalli N.M.S., Fedoroff N., Nunes S.P., and Leiknes T., Vacuum membrane distillation of liquid desiccants utilizing hollow fiber membranes, Separation and Purification Technology 199 (2018) 57-63. DOI: https://doi.org/10.1016/j.seppur.2018.01.042

Duong H.C., Álvarez I.R.C., Nguyen T.V., and Nghiem L.D., Membrane distillation to regenerate different liquid desiccant solutions for air conditioning, Desalination 443 (2018) 137-142. DOI: https://doi.org/10.1016/j.desal.2018.05.023

Chen Q., Kum Ja M., Li Y., and Chua K.J., Thermodynamic optimization of a vacuum multi-effect membrane distillation system for liquid desiccant regeneration, Applied Energy 230 (2018) 960-973. DOI: https://doi.org/10.1016/j.apenergy.2018.09.072

Duong H.C., Hai F.I., Al-Jubainawi A., Ma Z., He T., and Nghiem L.D., Liquid desiccant lithium chloride regeneration by membrane distillation for air conditioning, Separation and Purification Technology 177 (2017) 121-128. DOI: https://doi.org/10.1016/j.seppur.2016.12.031

Gurubalan A., Maiya M.P., and Geoghegan P.J., A comprehensive review of liquid desiccant air conditioning system, Applied Energy 254 (2019) 113673. DOI: https://doi.org/10.1016/j.apenergy.2019.113673

Drioli E., Ali A., and Macedonio F., Membrane distillation: Recent developments and perspectives, Desalination 356 (2015) 56-84. DOI: https://doi.org/10.1016/j.desal.2014.10.028

Hitsov I., Maere T., De Sitter K., Dotremont C., and Nopens I., Modelling approaches in membrane distillation: A critical review, Separation and Purification Technology 142 (2015) 48-64. DOI: https://doi.org/10.1016/j.seppur.2014.12.026

Duong H.C., Cooper P., Nelemans B., Cath T.Y., and Nghiem L.D., Optimising thermal efficiency of direct contact membrane distillation by brine recycling for small-scale seawater desalination, Desalination 374 (2015) 1-9. DOI: https://doi.org/10.1016/j.desal.2015.07.009

Duong H.C., Phan N.D., Nguyen T.V., Pham T.M., and Nguyen N.C., Membrane distillation for seawater desalination applications in Vietnam: potential and challenges, Vietnam Journal of Science and Technology 55 (2017) 659-682. DOI: https://doi.org/10.15625/2525-2518/55/6/10715

Duong H.C., Ansari A.J., Cao H.T., Nguyen N.C., Do K.-U., and Nghiem L.D., Membrane distillation regeneration of liquid desiccant solution for air-conditioning: Insights into polarisation effects and mass transfer, Environmental Technology & Innovation 19 (2020) 100941. DOI: https://doi.org/10.1016/j.eti.2020.100941

Duong H.C., Duke M., Gray S., Cooper P., and Nghiem L.D., Membrane scaling and prevention techniques during seawater desalination by air gap membrane distillation, Desalination 397 (2016) 92-100. DOI: https://doi.org/10.1016/j.desal.2016.06.025

Srisurichan S., Jiraratananon R., and Fane A.G., Mass transfer mechanisms and transport resistances in direct contact membrane distillation process, Journal of Membrane Science 277 (2006) 186-194. DOI: https://doi.org/10.1016/j.memsci.2005.10.028

Duong H.C., Cooper P., Nelemans B., Cath T.Y., and Nghiem L.D., Evaluating energy consumption of air gap membrane distillation for seawater desalination at pilot scale level, Separation and Purification Technology 166 (2016) 55-62. DOI: https://doi.org/10.1016/j.seppur.2016.04.014

Downloads

Published

2020-12-15

How to Cite

[1]
H. C. Duong and L. T. T. Tran, “Simulation of direct contact membrane distillation regeneration of liquid desiccant solutions used in air-conditioning”, Vietnam J. Sci. Technol., vol. 58, no. 6, pp. 747–759, Dec. 2020.

Issue

Section

Environment