High photocatalytic activity of magnetic composite photocatalyst NiFe2O4/BiVO4 for rhodamine b degradation under visible led light irradiation

Authors

  • Minh Que Doan Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, Viet Nam
  • Linh Xuan Nong Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, Viet Nam
  • Trinh Duy Nguyen Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, Viet Nam https://orcid.org/0000-0002-7241-1488

DOI:

https://doi.org/10.15625/2525-2518/58/6/15157

Keywords:

Magnetic composite photocatalyst, NiFe2O4/BiVO4, rhodamine B degradation, visible LED light irradiation

Abstract

To improve the photocatalytic activity of BiVO4 semiconductor, the design of composite photocatalyst containing BiVO4 with surpassing the recombination of photoinduced electron and hole is highly required. In this study, magnetic composite photocatalyst with NiFe2O4 and BiVO4 has developed through two-steps hydrothermal method. The results show that the morphology of the bare BiVO4 had a decahedral shape with smooth surfaces along with particles, while the morphology of the bare NiFeO4 had nanoparticles with the diameter in a range of 10-20 nm. In the case of 20% NiFe2O4/ BiVO4 samples, a large of nanoparticles were deposited into large bulk, implying the incorporation of NiFe2O4 nanoparticles on the surface of BiVO4 catalyst. Compared with the bare BiVO4, the NiFe2O4/BiVO4 composites had a higher photocatalytic efficiency for photodecomposition of rhodamine B (RhB) under visible LED light irradiation. The improvement of photocatalytic degradation RhB activity should be attributed to a direct Z‐scheme system. Therefore, the fabrication of semiconductors with a combination of magnetic materials provides new insight for the enhancement of their photocatalytic performance.

Downloads

Download data is not yet available.

References

Rivera-Utrilla, J., Ocampo-Perez, R., Sanchez-Polo, M., Lopez-Penalver, J.J., Gomez-Pacheco, C.V.-Removal of Tetracyclines from Water by Adsorption/Bioadsorption and Advanced Oxidation Processes. A Short Review, Curr. Org. Chem. 22 (2018) 1005–1021. DOI: https://doi.org/10.2174/1385272822666180322124243

Klavarioti, M., Mantzavinos, D., Kassinos, D.-Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes., Environ. Int. 35 (2009) 402–17. DOI: https://doi.org/10.1016/j.envint.2008.07.009

Saeid, S., Tolvanen, P., Kumar, N., Eränen, K., Peltonen, J., Peurla, M., Mikkola, J.P., Franz, A., Salmi, T.-Advanced oxidation process for the removal of ibuprofen from aqueous solution: A non-catalytic and catalytic ozonation study in a semi-batch reactor, Appl. Catal. B Environ. 230 (2018) 77–90. DOI: https://doi.org/10.1016/j.apcatb.2018.02.021

Tan, G., Zhang, L., Ren, H., Wei, S., Huang, J., Xia, A.-Effects of pH on the hierarchical structures and photocatalytic performance of BiVO4 powders prepared via the microwave hydrothermal method, ACS Appl. Mater. Interfaces. 5 (2013) 5186–5193. DOI: https://doi.org/10.1021/am401019m

Xu, T., Zhu, R., Zhu, G., Zhu, J., Liang, X., Zhu, Y., He, H.-Mechanisms for the enhanced photo-Fenton activity of ferrihydrite modified with BiVO4 at neutral pH, Appl. Catal. B Environ. 212 (2017) 50–58. DOI: https://doi.org/10.1016/j.apcatb.2017.04.064

Walsh, A., Yan, Y., Huda, M.N., Al-Jassim, M.M., Wei, S.H.-Band edge electronic structure of BiVO 4: Elucidating the role of the Bi s and V d orbitals, Chem. Mater. 21 (2009) 547–551. DOI: https://doi.org/10.1021/cm802894z

Ge, M., Liu, L., Chen, W., Zhou, Z.-Sunlight-driven degradation of Rhodamine B by peanut-shaped porous BiVO 4 nanostructures in the H 2O 2-containing system, CrystEngComm. 14 (2012) 1038–1044. DOI: https://doi.org/10.1039/C1CE06264F

Pingmuang, K., Chen, J., Kangwansupamonkon, W., Wallace, G.G., Phanichphant, S., Nattestad, A.-Composite Photocatalysts Containing BiVO 4 for Degradation of Cationic Dyes, Sci. Rep. 7 (2017) 8929. DOI: https://doi.org/10.1038/s41598-017-09514-5

Srinivasan, N., Sakai, E., Miyauchi, M.-Balanced Excitation between Two Semiconductors in Bulk Heterojunction Z-Scheme System for Overall Water Splitting, ACS Catal. 6 (2016) 2197–2200. DOI: https://doi.org/10.1021/acscatal.6b00267

Dang Phu, N., Huy Hoang, L., Guo, P.C., Chen, X.B., Ching Chou, W.-Study of photocatalytic activities of Bi2WO6/BiVO4 nanocomposites, J. Sol-Gel Sci. Technol. 83 (2017) 640–646. DOI: https://doi.org/10.1007/s10971-017-4450-8

Long, Cai, Kisch, H.-Visible Light Induced Photoelectrochemical Properties of n-BiVO 4 and n-BiVO 4 /p-Co 3 O 4, J. Phys. Chem. C. 112 (2008) 548–554. DOI: https://doi.org/10.1021/jp075605x

Qi, X., Gu, M., Zhu, X., Wu, J., Wu, Q., Long, H., He, K.-Controlled synthesis of Ag 3 PO 4 /BiVO 4 composites with enhanced visible-light photocatalytic performance for the degradation of RhB and 2, 4-DCP, Mater. Res. Bull. 80 (2016) 215–222. DOI: https://doi.org/10.1016/j.materresbull.2016.03.025

Tan, H.L., Wen, X., Amal, R., Ng, Y.H.-BiVO4 {010} and {110} Relative Exposure Extent: Governing Factor of Surface Charge Population and Photocatalytic Activity, J. Phys. Chem. Lett. 7 (2016) 1400–1405. DOI: https://doi.org/10.1021/acs.jpclett.6b00428

Wang, D., Jiang, H., Zong, X., Xu, Q., Ma, Y., Li, G., Li, C.-Crystal facet dependence of water oxidation on BiVO4 sheets under visible light irradiation, Chem. - A Eur. J. 17 (2011) 1275–1282. DOI: https://doi.org/10.1002/chem.201001636

Zhu, P., Liu, S., Xie, J., Zhang, S., Cao, G., Zhao, X.-Facile Synthesis of NiFe2O4/Reduced Graphene Oxide Hybrid with Enhanced Electrochemical Lithium Storage Performance, J. Mater. Sci. Technol. 30 (2014) 1078–1083. DOI: https://doi.org/10.1016/j.jmst.2014.08.009

Chen, L., Dai, H., Shen, Y., Bai, J.-Size-controlled synthesis and magnetic properties of NiFe2O4 hollow nanospheres via a gel-assistant hydrothermal route, J. Alloys Compd. 491 (2010) 33–38. DOI: https://doi.org/10.1016/j.jallcom.2009.11.031

Asgari Moghaddam, H., Jafari, S., Mohammadi, M.R.-Enhanced efficiency of over 10% in dye-sensitized solar cells through C and N single- and co-doped TiO2 single-layer electrodes, New J. Chem. 41 (2017) 9453–9460. DOI: https://doi.org/10.1039/C7NJ01535F

Nguyen, T.D., Bui, Q.T.P., Le, T.B., Altahtamouni, T.M., Vu, K.B., Vo, D.V.N., Le, N.T.H., Luu, T.D., Hong, S.S., Lim, K.T.-Co2+ substituted for Bi3+ in BiVO4 and its enhanced photocatalytic activity under visible LED light irradiation, RSC Adv. 9 (2019) 23526–23534. DOI: https://doi.org/10.1039/C9RA04188E

Jiang, H. qing, Endo, H., Natori, H., Nagai, M., Kobayashi, K.-Fabrication and photoactivities of spherical-shaped BiVO4 photocatalysts through solution combustion synthesis method, J. Eur. Ceram. Soc. 28 (2008) 2955–2962. DOI: https://doi.org/10.1016/j.jeurceramsoc.2008.05.002

Sun, J., Chen, G., Wu, J., Dong, H., Xiong, G.-Bismuth vanadate hollow spheres: Bubble template synthesis and enhanced photocatalytic properties for photodegradation, Appl. Catal. B Environ. 132–133 (2013) 304–314. DOI: https://doi.org/10.1016/j.apcatb.2012.12.002

Downloads

Published

2020-12-15

How to Cite

[1]
M. Q. Doan, L. X. Nong, and T. D. Nguyen, “High photocatalytic activity of magnetic composite photocatalyst NiFe2O4/BiVO4 for rhodamine b degradation under visible led light irradiation”, Vietnam J. Sci. Technol., vol. 58, no. 6, pp. 718–727, Dec. 2020.

Issue

Section

Materials