Preparation and characterizations of plasticized PMMA/PVC/Mg(ClO4)2 electrolytes

Do Quang Tham, Tran Thi Mai, Thai Hoang, Nguyen Thi Kim Dung, Nguyen Quang Tung, Nguyen Thi Dieu Linh, Lai Thi Huyen, Dam Xuan Thang, Do Van Cong, Mai Duc Huynh, Nguyen Thi Thai
Author affiliations

Authors

  • Do Quang Tham Institute for Tropical Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam https://orcid.org/0000-0001-5480-4360
  • Tran Thi Mai Institute for Tropical Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Thai Hoang Institute for Tropical Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Nguyen Thi Kim Dung National Academy of Education Management, 31 Phan Dinh Giot, Thanh Xuan, Ha Noi, Viet Nam
  • Nguyen Quang Tung Faculty of Chemical Technology, HaUI, Tay Tuu, North Tu Liem, Ha Noi, Viet Nam
  • Nguyen Thi Dieu Linh Faculty of Chemical Technology, HaUI, Tay Tuu, North Tu Liem, Ha Noi, Viet Nam
  • Lai Thi Huyen Faculty of Chemical Technology, HaUI, Tay Tuu, North Tu Liem, Ha Noi, Viet Nam
  • Dam Xuan Thang Faculty of Chemical Technology, HaUI, Tay Tuu, North Tu Liem, Ha Noi, Viet Nam
  • Do Van Cong Institute for Tropical Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Mai Duc Huynh Institute for Tropical Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Nguyen Thi Thai Institute for Tropical Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/57/5/13661

Keywords:

polymer electrolytes, PMMA, PVC, magnesium perchlorate, ionic conductivity

Abstract

Electrolyte films based on poly(methyl methacrylate) (PMMA), poly(vinyl chloride) (PVC) were prepared by using casting method with the addition 100 wt.% to 240 wt.% of dioctyl phthalate (DOP), propylene carbonate (PC) as plasticizers and Mg(ClO4)2 as an electrolytic salt. The Fourier infrared spectra (FTIR), tensile, electrical properties, surface morphology of electrolyte films were investigated. The FTIR spectra of plasticized PMMA/PVC blends indicated that there were secondary interactions between plasticizers and PMMA/PVC matrix. There were also molecular interactions between Mg(ClO4)2 and the blends, which indicated that Mg(ClO4)2 was well dissolved and solvated in the blends. Tensile results showed that Mg(ClO4)2 improved the elongation at break and the reduced tensile strength and Young’s modulus of the blends due to this salt can act as an internal lubricant for the blends. The SEM and EDX-mapping micrographs showed the wrinkled surface morphology of the electrolyte film, all raw materials were dispersed regularly into each others at molecular and ionic levels. For the electrolytes containing 10 wt.% of Mg(ClO4)2, the ionic conductivity increased with increasing plasticizer content and achieved in the range of 1.80 × 10-4 - 1.03 × 10-3 (S/cm). For the electrolyte containing 200 wt.% of the plasticizer, the ionic conductivity increased with increasing magnesium salt content and achieved in the range of 2.31 × 10-4 - 4.57 × 10-3 (S/cm). 

Downloads

Download data is not yet available.

References

. Wang Y., and Zhong W.-H. - Development of Electrolytes towards Achieving Safe and High-Performance Energy-Storage Devices: A Review. ChemElectroChem 2(1) (2015) 22-36.

. Su’ait M. S., Rahman M. Y. A., and Ahmad A. - Review on polymer electrolyte in dye-sensitized solar cells (DSSCs). Solar Energy 115 (2015) 452-470.

. Bucur C. B., in: C.B. Bucur, (Ed.) - Challenges of a Rechargeable Magnesium Battery: A Guide to the Viability of this Post Lithium-Ion Battery, Springer International Publishing, Cham, 2018, pp. 11-38.

. Ren Y., Zhang Z., Fang S., Yang M., and Cai S. - Application of PEO based gel network polymer electrolytes in dye-sensitized photoelectrochemical cells. Solar Energy Materials and Solar Cells 71(2) (2002) 253-259.

. James J., Kyung Mo S., Vittal R., Whasup L., and Kang-Jin K. - Quasi-solid-state dye-sensitized solar cells with siloxane poly(ethylene glycol) hybrid gel electrolyte. Semiconductor Science and Technology 21(5) (2006) 697.

. Lan J.-L., Wang Y.-Y., Wan C.-C., Wei T.-C., Feng H.-P., Peng C., Cheng H.-P., Chang Y.-H., and Hsu W.-C. - The simple and easy way to manufacture counter electrode for dye-sensitized solar cells. Current Applied Physics 10(2, Supplement) (2010) S168-S171.

. Bella F., Ozzello E. D., Bianco S., and Bongiovanni R. - Photo-polymerization of acrylic/methacrylic gel–polymer electrolyte membranes for dye-sensitized solar cells. Chemical Engineering Journal 225(1 June) (2013) 873-879.

. Taslim R., Rahman M. Y. A., Salleh M. M., Umar A. A., and Ahmad A. - Fabrication of a nanoparticle TiO2 photoelectrochemical cell utilizing a solid polymeric electrolyte of PAN–PC–LiClO4. Ionics 16(7) (2010) 639-644.

. Rahman M. Y. A., Salleh M. M., Talib I. A., and Yahaya M. - Light intensity and temperature dependence on performance of a photoelectrochemical cells of ITO/TiO2/PVC-LiClO4/graphite. Ionics 13(4) (2007) 241-244.

. Kim J. Y., Kim T. H., Kim D. Y., Park N.-G., and Ahn K.-D. - Novel thixotropic gel electrolytes based on dicationic bis-imidazolium salts for quasi-solid-state dye-sensitized solar cells. Journal of Power Sources 175(1) (2008) 692-697.

. Appetecchi G. B., Croce F., and Scrosati B. - Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes. Electrochimica Acta 40(8) (1995) 991-997.

. Feuillade G., and Perche P. - Ion-conductive macromolecular gels and membranes for solid lithium cells. Journal of Applied Electrochemistry 5(1) (1975) 63-69.

. Zhou Y. F., Xie S., Ge X. W., Chen C. H., and Amine K. - Preparation of rechargeable lithium batteries with poly(methyl methacrylate) based gel polymer electrolyte by in situγ-ray irradiation-induced polymerization. Journal of Applied Electrochemistry

(11) (2004) 1119-1125.

. Stephan A. M., Renganathan N. G., Kumar T. P., Thirunakaran R., Pitchumani S., Shrisudersan J., and Muniyandi N. - Ionic conductivity studies on plasticized PVC/PMMA blend polymer electrolyte containing LiBF4 and LiCF3SO3. Solid State Ionics 130(1) (2000) 123-132.

. Stephan A. M., Kumar T. P., Renganathan N. G., Pitchumani S., Thirunakaran R., and Muniyandi N. - Ionic conductivity and FT-IR studies on plasticized PVC/PMMA blend polymer electrolytes. Journal of Power Sources 89(1) (2000) 80-87.

. Rhoo H.-J., Kim H.-T., Park J.-K., and Hwang T.-S. - Ionic conduction in plasticized PVC/PMMA blend polymer electrolytes. Electrochimica Acta 42(10) (1997) 1571-1579.

. Mohtadi R., and Mizuno F. - Magnesium batteries: Current state of the art, issues and future perspectives. Beilstein Journal of Nanotechnology 5 (2014) 1291-1311.

. Keysight-Technologies, - Accessories Catalog for Impedance Measurements, Published in USA, 2017.

. Stephan A. M., Thirunakaran R., Renganathan N. G., Sundaram V., Pitchumani S., Muniyandi N., Gangadharan R., and Ramamoorthy P. - A study on polymer blend electrolyte based on PVC/PMMA with lithium salt. Journal of Power Sources 81 (1999) 752-758.

. Luqman M., - Recent Advances in Plasticizers, InTech, Rijeka, Croatia, 2012.

. Vondrák J., X, Sedlařı, X, Ková M., Velická J., Klápště B., Novák V., X, Tězslav, and Reiter J. - Gel polymer electrolytes based on PMMA. Electrochimica Acta 46(13) (2001) 2047-2048.

. Wang K., Zeng D., Zhang J.-G., Cui Y., Zhang T.-L., Li Z.-M., and Jin X. - Controllable explosion: fine-tuning the sensitivity of high-energy complexes. Dalton Transactions 44(28) (2015) 12497-12501.

. Wu Z., Wang A., and Ling Z. - Spectroscopic study of perchlorates and other oxygen chlorides in a Martian environmental chamber. Earth and Planetary Science Letters 452 (2016) 123-132.

. Chen Y., Zhang Y.-H., and Zhao L.-J. - ATR-FTIR spectroscopic studies on aqueous LiClO4, NaClO4, and Mg(ClO4)2 solutions. Physical Chemistry Chemical Physics 6(3) (2004) 537-542.

. Pandey G. P., Agrawal R. C., and Hashmi S. A. - Magnesium ion-conducting gel polymer electrolytes dispersed with nanosized magnesium oxide. Journal of Power Sources 190(2) (2009) 563-572.

. Guduru K. R., and Icaza C. J. - A Brief Review on Multivalent Intercalation Batteries with Aqueous Electrolytes. Nanomaterials 6(3) (2016) 41; doi:10.3390/nano6030041.

. Tham D. Q., Mai T. T., Hoang T., Trang N. T. T., Chinh N. T., and Thang D. X. - Preparation and FTIR studies of PMMA/PVC polymer blends, PVC-g-PMMA graft copolymers and evaluating graft content. Vietnam Journal of Science and Technology 57(1) (2019) 32-41.

. Khamzin A., Popov I. I., and Nigmatullin R. - Correction of the power law of ac conductivity in ion-conducting materials due to the electrode polarization effect. Physical Review E 89 (2014) 032303-1 - 032303-8.

. Osman Z., Zainol N. H., Samin S. M., Chong W. G., Md Isa K. B., Othman L., Supa’at I., and Sonsudin F. - Electrochemical Impedance Spectroscopy Studies of Magnesium-Based Polymethylmethacrylate Gel Polymer Electroytes. Electrochimica Acta 131 (2014) 148-153.

. Chia C. H., Chan C. H., and Thomas S., - Functional polymeric composites: Macro to nanoscales. Chapter 5, CRC Press, 2017, pp. 97-129.

. Ramesh S., and Liew C.-W. - Dielectric and FTIR studies on blending of [xPMMA–(1−x)PVC] with LiTFSI. Measurement 46(5) (2013) 1650-1656.

. Anilkumar K. M., Jinisha B., Manoj M., and Jayalekshmi S. - Poly(ethylene oxide) (PEO) – Poly(vinyl pyrrolidone) (PVP) blend polymer based solid electrolyte membranes for developing solid state magnesium ion cells. European Polymer Journal 89 (2017) 249-262.

Downloads

Published

08-10-2019

How to Cite

[1]
D. Q. Tham, “Preparation and characterizations of plasticized PMMA/PVC/Mg(ClO<sub>4</sub>)<sub>2</sub> electrolytes”, Vietnam J. Sci. Technol., vol. 57, no. 5, pp. 559–571, Oct. 2019.

Issue

Section

Materials

Most read articles by the same author(s)

<< < 1 2