Synthesis and electrochemical properties of porous CNTs-ferrite hybrid nanostructures for supercapacitor
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/57/1/12801Keywords:
electrode, porous, hybrid nanomaterials, supercapacitorAbstract
Carbon nanotubes (CNTs)-ferrites hybrid nanomaterials have attracted extensive research interest owing to their large specific surfae area, high electrical, thermal conductiviy and outstanding electrochemical properties, which are widely investigated for energy conversion and storage devices. Regular syntheses rely mainly on the in situ growth of ferrite nanoparticles (NPs) in the presence of the preformed CNTs. It is very challenging to control the composition and morphology of the individual components, and to scale-up the synthesis. In this work, ferrite NPs were prepared by solvothermal method. Porous (3D) CNTs-ferrites hybrid aerogels were fabricated by using freeze gelation method. The results indicate that the obtained 3D CNTs-ferrites aerogels were very porous, highly electrical conductive and have good electrochemical properties.Downloads
References
A. S. Arico , P. Bruce , B. Scrosati , J.-M. Tarascon , W. V. Schalkwijk - Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater. , 4 , 366 (2005).
P. Simon , Y. Gogotsi - Materials for electrochemical capacitors, Nat. Mater., 7, 845 (2008).
X. Zang, P. Li, Q. Chen, K. Wang, J. Wei, D. Wu, and H. Zhu - Evaluation of layer-by-layer graphene structures as supercapacitor electrode materials, J. Appl. Phys. 115, 024305 (2014).
A. Mishra and S. Ramaprabhu - Ultrahigh arsenic sorption using iron oxide-graphene nanocomposite supercapacitor assembly, J. Appl. Phys. 112, 104315 (2012).
J. Chen, N. Xia, T. Zhou, S. Tan, F. Jiang, and D. Yuan, Int. J. Electrochem. Sci. 4, 1163 (2009).
S. Boukhalfa, K. Evanoff, and G. Yushin - Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes, Energy Environ. Sci. 5, 6872 (2012).
C. T. Hsieh, Y. C. Chen, Y. F. Chen, M. M. Huq, P. Y. Chen, and B. S. Jang - Microwave synthesis of titania-coated carbon nanotube composites for electrochemical capacitors, J. Power Sources 269, 526 (2014).
Y. Zhu, H. I. Elim, Y.-L. Foo, T. Yu, Y. Liu, W. Ji, J.-Y. Lee, Z. Shen, A. T.-S. Wee, and J. T.-L. Thong - Multiwalled Carbon Nanotubes Beaded with ZnO Nanoparticles for Ultrafast Nonlinear Optical Switching, Adv. Mater. 18, 587 (2006).
C. Du, J. Yeh, and N. Pan - High power density supercapacitors using locally aligned carbon nanotube electrodes, Nanotechnology 16, 350 (2005).
S. Chen, Y. Liu, and J. Chen - Heterogeneous electron transfer at nanoscopic electrodes: importance of electronic structures and electric double layers, Chem. Soc. Rev. 43, 5372 (2014).
R. A. Fisher, M. R. Watt, and W. J. Ready - Functionalized Carbon Nanotube Supercapacitor Electrodes: A Review on Pseudocapacitive Materials, ECS J. Solid State Sci. Technol. 2, M3170 (2013).
M. Ho, P. Khiew, D. Isa, T. Tan, W. Chiu, and C. H. Chia – A review of metal oxide composite electrode materials for electrochemical capacitors, Nano 9, 1430002 (2014).
S. W. Lee, J. Kim, S. Chen, P. T. Hammond, and Y. Shao-Horn - Carbon Nanotube/Manganese Oxide Ultrathin Film Electrodes for Electrochemical Capacitors, ACS Nano 4, 3889 (2010).
J. H. Park, J. M. Ko, and O. O. Park - Carbon Nanotube/RuO2 Nanocomposite Electrodes for Supercapacitors, J. Electrochem. Soc. 150, A864 (2003).
P.-C. Chen, G. Shen, S. Sukcharoenchoke, and C. Zhou - Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films, Appl. Phys. Lett. 94, 043113 (2009).
Chen, V. Augustyn, J. Wen, Y. Zhang, M. Shen, B. Dunn, and Y. Lu - High-Performance Supercapacitors Based on Intertwined CNT/V2O5 Nanowire Nanocomposites, Adv. Mater. 23, 791 (2011).
L. Aravinda, K. Nagaraja, H. Nagaraja, K. U. Bhat, and B. R. Bhat - ZnO/carbon nanotube nanocomposite for high energy density supercapacitors, Electrochim. Acta 95, 119 (2013).
P. Lin, Q. She, B. Hong, X. Liu, Y. Shi, Z. Shi, M. Zheng, and Q. Dong - The Nickel Oxide/CNT Composites with High Capacitance for Supercapacitor, J. Electrochem. Soc. 157, A818 (2010).
Dong, A., Ye, X., Chen, J., Kang, Y., Gordon, T., Kikkawa, J. M., & Murray, C. B. - A Generalized Ligand-Exchange Strategy Enabling Sequential Surface Functionalization of Colloidal Nanocrystals, J. Am. Chem. Soc., 133(4), 998–1006 (2011).
Van Chuc, N., Dung, N. D., Hong, P. N., Quang, L. D., Khoi, P. H., & Minh, P. N.- Synthesis of Carbon Nanotubes on Steel Foils , J. Korean Physic. Soc., 52(5), 1368 (2008).
Lin, Y., Liu, F., Casano, G., Bhavsar, R., Kinloch, I. A., & Derby, B. - Pristine Graphene Aerogels by Room-Temperature Freeze Gelation, Adv. Mate. (2016).
Tantra, R., Schulze, P., & Quincey, P. - Effect of nanoparticle concentration on Zeta-potential measurement results and reproducibility, Particuology, 8(3), 279–285 (2010).
Mombeshora, E. T., Simoyi, R., Nyamori, V. O., & Ndungu, P. G. - Multiwalled carbon nanotube-titania nanocomposites: Understanding nano-structural parameters and functionality in dye-sensitized solar cells, S. Afr. J. Chem, 68 (2015).
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.