MAXIMIZING LIFETIME OF HETEROGENEOUS WIRELESS TURNABLE CAMERA SENSOR NETWORKS ENSURING STRONG BARRIER COVERAGE
Author affiliations
DOI:
https://doi.org/10.15625/1813-9663/37/1/15858Keywords:
Maximizing the network lifetime, barrier coverage, wireless sensor networks, heterogeneous wireless tunable camera sensor networks, max flowAbstract
Barrier coverage in wireless camera sensor networks (WCSNs) has drawn the attention of research community since it promises an extremely large potential in applications involve movement detection and surveillance. As the battery resources are limited, improving the efficiency of energy is one of the key drivers for prolonging the lifetime of barrier coverage. However, most prior studies on this problem only worked on the networks with homogeneous sensors as well as omni-directional sensing coverage that have not been taken into account in WCSNs research. This paper thus investigates the problem of maximizing the network lifetime to ensure strong barrier coverage for heterogeneous case (MLBC-HWCSN). We formulate the problem, and then propose a Modify Maximum Flow Algorithm (MMFA) consisting of three stages: constructing the flow-network, finding the maximum flow and refining the solution to solve this problem. Experimental results on extensive instances show that the proposed methodology is suitable for the studied problem and more efficient than existing algorithms.
Metrics
Downloads
Published
How to Cite
Issue
Section
License
1. We hereby assign copyright of our article (the Work) in all forms of media, whether now known or hereafter developed, to the Journal of Computer Science and Cybernetics. We understand that the Journal of Computer Science and Cybernetics will act on my/our behalf to publish, reproduce, distribute and transmit the Work.2. This assignment of copyright to the Journal of Computer Science and Cybernetics is done so on the understanding that permission from the Journal of Computer Science and Cybernetics is not required for me/us to reproduce, republish or distribute copies of the Work in whole or in part. We will ensure that all such copies carry a notice of copyright ownership and reference to the original journal publication.
3. We warrant that the Work is our results and has not been published before in its current or a substantially similar form and is not under consideration for another publication, does not contain any unlawful statements and does not infringe any existing copyright.
4. We also warrant that We have obtained the necessary permission from the copyright holder/s to reproduce in the article any materials including tables, diagrams or photographs not owned by me/us.