A NEW HYBRID FUZZY TIME SERIES FORECASTING MODEL BASED ON COMBINING FUZZY C-MEANS CLUSTERING AND PARTICLE SWAM OPTIMIZATION
Author affiliations
DOI:
https://doi.org/10.15625/1813-9663/35/3/13496Keywords:
Enrolments, forecasting, FTS, time – variant fuzzy relationship groups, PSO, FCMAbstract
Fuzzy time series (FTS) model is one of the effective tools that can be used to identify factors in order to solve the complex process and uncertainty. Nowadays, it has been widely used in many forecasting problems. However, establishing effective fuzzy relationships groups, finding proper length of each interval, and building defuzzification rule are three issues that exist in FTS model. Therefore, in this paper, a novel FTS forecasting model based on fuzzy C-means (FCM) clustering and particle swarm optimization (PSO) was developed to enhance the forecasting accuracy. Firstly, the FCM clustering is used to divide the historical data into intervals with different lengths. After generating interval, the historical data is fuzzified into fuzzy sets. Following, fuzzy relationship groups were established based on the appearance history of the fuzzy sets on the right-hand side of the fuzzy logical relationships with the aim to serve for calculating the forecasting output. Finally, the proposed model combined with PSO algorithm was applied to adjust interval lengths and find proper intervals in the universe of discourse for obtaining the best forecasting accuracy. To verify the effectiveness of the forecasting model, three numerical datasets (enrolments data of the University of Alabama, the Taiwan futures exchange –TAIFEX data and yearly deaths in car road accidents in Belgium) are selected to illustrate the proposed model. The experimental results indicate that the proposed model is better than any existing forecasting models in term of forecasting accuracy based on the first – order and high-order FTS.Metrics
Metrics Loading ...
Downloads
Published
02-08-2019
How to Cite
[1]
N. V. Tinh and N. C. Dieu, “A NEW HYBRID FUZZY TIME SERIES FORECASTING MODEL BASED ON COMBINING FUZZY C-MEANS CLUSTERING AND PARTICLE SWAM OPTIMIZATION”, JCC, vol. 35, no. 3, p. 267–292, Aug. 2019.
Issue
Section
Articles
License
1. We hereby assign copyright of our article (the Work) in all forms of media, whether now known or hereafter developed, to the Journal of Computer Science and Cybernetics. We understand that the Journal of Computer Science and Cybernetics will act on my/our behalf to publish, reproduce, distribute and transmit the Work.2. This assignment of copyright to the Journal of Computer Science and Cybernetics is done so on the understanding that permission from the Journal of Computer Science and Cybernetics is not required for me/us to reproduce, republish or distribute copies of the Work in whole or in part. We will ensure that all such copies carry a notice of copyright ownership and reference to the original journal publication.
3. We warrant that the Work is our results and has not been published before in its current or a substantially similar form and is not under consideration for another publication, does not contain any unlawful statements and does not infringe any existing copyright.
4. We also warrant that We have obtained the necessary permission from the copyright holder/s to reproduce in the article any materials including tables, diagrams or photographs not owned by me/us.