The role of copper decorating poly(1,8-diaminonaphthalene)/graphene electrodes as a catalyst in the determination of nitrite

Bui Thi Hong Van, Do Thi Thuy, Nguyen Le Huy, Nguyen Thi Tuyet Mai, Tran Dai Lam, Nguyen Tuan Dung
Author affiliations

Authors

  • Bui Thi Hong Van School of Chemical Engineering, Hanoi University of Science and Technology, 19 Le Thanh Tong Streets, Hai Ba Trung District, Ha Noi, Viet Nam
  • Do Thi Thuy Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Streets, Cau Giay District, Ha Noi, Viet Nam
  • Nguyen Le Huy Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Streets, Cau Giay District, Ha Noi, Viet Nam
  • Nguyen Thi Tuyet Mai School of Chemical Engineering, Hanoi University of Science and Technology, 19 Le Thanh Tong Streets, Hai Ba Trung District, Ha Noi, Viet Nam
  • Tran Dai Lam Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Streets, Cau Giay District, Ha Noi, Viet Nam
  • Nguyen Tuan Dung Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/16658

Keywords:

poly(1,8-diaminonaphthalene)/graphene, nitrite, sensor, copper mine, Ca-based catalysts

Abstract

. Electroactive poly(1,8-diaminonaphthalene) is known to have a high affinity for metal ions thanks to amine and imine groups in the polymer chain. However, electrochemical sensors based on pristine P(1,8-DAN) have a major drawback concerning its poor electrical conductivity. To solve this problem, recently P(1,8-DAN) has been modified with some advanced nanomaterials such as carbonaceous materials or different metallic elements. In this research, we reported the synthesis and electrochemical characterization of a poly(1,8-diaminonaphthalene)/graphene composite film capable of adsorbing Cu2+ ions towards the application of nitrite sensing. P(1,8-DAN) was directly electropolymerized on graphene-coated glassy carbon electrode by a potential cycling between –0.15 and +0.95 V (vs. SCE) at a scan rate of 0.05 V/s, in aqueous solution  containing 1.0 M HClO4 and 1.0 mM monomer 1,8-DAN,. The adsorption of Cu2+ ions onto the P(1,8-DAN) thin film was caried out in 0.1 M Cu(NO3)2 solution at 80 oC, followed by electrochemically redution to metal Cu0 by applying -0.4 V. The obtained copper decorating poly(1,8-diaminonaphthalene)/graphene (Gr/P(1,8-DAN)-Cu) electrodes acted as a catalyst in the enhancement of electrochemical signal for the determination of nitrite. The linear voltammetric response to the nitrite concentration was observed by a square wave voltammetric technique in the range of 0.69 to 1.12 mM with a detection limit of 0.13 mM. The results open up the path for designing other nitrite sensing based on our novel approach.

Downloads

References

Jackowska K., A. Kudelski, J. Bukowska - Poly-1,8-Diaminonaphthalene: Sensor for Heavy Metal Ions, Mater. Sci. Forum 191 (1995) 247-250. https://doi.org/10.4028/ www.scientific.net/MSF.191.247. DOI: https://doi.org/10.4028/www.scientific.net/MSF.191.247

Pałys B. J., M. Skompska, K. Jackowska - Sensitivity of poly 1,8-diaminonaphthalene to heavy metal ions - electrochemical and vibrational spectra studies, J. Electroanal. Chem. 433 (1) (1997) 41-48. https://doi.org/10.1016/S0022-0728(97)00144-7. DOI: https://doi.org/10.1016/S0022-0728(97)00144-7

Kudelski A., J. Bukowska, K. Jackowska - Trapping of Cu2+ and VO2+ ions in conducting polymer matrices - EPR studies, J. Mol. Struct. 482-483 (1999) 291-294. https://doi.org/10.1016/S0022-2860(98)00933-8. DOI: https://doi.org/10.1016/S0022-2860(98)00933-8

Nguyen D.T., L.D. Tran, H. Le Nguyen, B.H. Nguyen, N. Van Hieu - Modified interdigitated arrays by novel poly(1,8-diaminonaphthalene)/carbon nanotubes composite for selective detection of mercury(II), Talanta 85 (5) (2011) 2445-2450. https://doi.org/10.1016/j.talanta.2011.07.094. DOI: https://doi.org/10.1016/j.talanta.2011.07.094

Nasalska A., M. Skompska - Removal of toxic chromate ions by the films of poly(1,8-diaminonaphthalene), J. Appl. Electrochem. 33 (1) (2003) 113-119. https://doi.org/ 10.1023/A:1022952019530. DOI: https://doi.org/10.1023/A:1022952019530

Fındık S., M. Gülfen, A.O. Aydın - Adsorption of Selenite Ions onto Poly(1,8-diaminonaphthalene) Synthesized by Using Ammonium Persulfate, Sep. Sci. Technol. 49 (18) (2014) 2890-2896. https://doi.org/10.1080/01496395.2014.946144. DOI: https://doi.org/10.1080/01496395.2014.946144

Nabid M. R., Sedghi R., Behbahani M., Arvan B., Heravi M. M., Oskooie H. A. - Application of Poly 1,8-diaminonaphthalene/multiwalled carbon nanotubes-COOH hybrid material as an efficient sorbent for trace determination of cadmium and lead ions in water samples, J. Mol. Recognit. 27 (7) (2014) 421-428. https://doi.org/ 10.1002/jmr.2361. DOI: https://doi.org/10.1002/jmr.2361

Li X. G., M. R. Huang, S. X. Li - Facile synthesis of poly(1,8-diaminonaphthalene) microparticles with a very high silver-ion adsorbability by a chemical oxidative polymerization, Acta Mater. 52 (18) (2004) 5363-5374. https://doi.org/10.1016/ j.actamat.2004.07.042. DOI: https://doi.org/10.1016/j.actamat.2004.07.042

Akkaya T., M. Gülfen, U. Olgun - Adsorption of rhodium(III) ions onto poly(1,8-diaminonaphthalene) chelating polymer: Equilibrium, kinetic and thermodynamic study, Reactive and Functional Polymers 73 (12) (2013) 1589-1596. https://doi.org/10.1016/ j.reactfunctpolym.2013.09.001. DOI: https://doi.org/10.1016/j.reactfunctpolym.2013.09.001

Hassan K. M., A. A. Hathoot, R. Maher, M. Abdel Azzem - Electrocatalytic oxidation of ethanol at Pd, Pt, Pd/Pt and Pt/Pd nano particles supported on poly 1,8-diaminonaphthalene film in alkaline medium, RSC Advances 8 (28) (2018) 15417-15426. https://doi.org/10.1039/C7RA13694C. DOI: https://doi.org/10.1039/C7RA13694C

Hung G. V., N. L. Huy, B. T. H. Van, N. T. Dung, N. T. T. Mai - Electrocatalytic activity for dopamine of silver nanoparticle onto graphene/poly(1,8-diaminonaphthalene) electrodes, Vietnam Journal of Catalysis and Adsorption 9 (1) (2020) 111-115. https://doi.org/10.51316/jca.2020.018 DOI: https://doi.org/10.51316/jca.2020.018

Salih F. E., A. Ouarzane, M. El Rhazi - Electrochemical detection of lead (II) at bismuth/Poly(1,8-diaminonaphthalene) modified carbon paste electrode, Arabian Journal of Chemistry 10 (5) (2017) 596-603. https://doi.org/10.1016/j.arabjc.2015. 08.021. DOI: https://doi.org/10.1016/j.arabjc.2015.08.021

Tamburri E., S. Orlanducci, M. L. Terranova, F. Valentini, G. Palleschi, A. Curulli, F. Brunetti, D. Passeri, A. Alippi, M. Rossi - Modulation of electrical properties in single-walled carbon nanotube/conducting polymer composites, Carbon 43 (6) (2005) 1213-1221. https://doi.org/10.1016/j.carbon.2004.12.014. DOI: https://doi.org/10.1016/j.carbon.2004.12.014

Trong V.V., T.T.H. Ngoc, L. Quan, V. V. Huy, B. T. Duy, N. L. Huy, N. V. Anh, N. T. Dung - Synthesis and Electrochemical Characterization of Graphene/Poly(1,8-diaminonaphthalene) Nanocomposite Films, Journal of Science and Technology 129 (2018) (2018) 054-058. https://jst.hust.edu.vn/journals/jst.129.khcn.2018.28.6.11

Hovancová J., I. Šišoláková, R. Oriňaková, A. Oriňak - Nanomaterial-based electrochemical sensors for detection of glucose and insulin, J. Solid State Electrochem 21 (8) (2017) 2147-2166. https://doi.org/10.1007/s10008-017-3544-0. DOI: https://doi.org/10.1007/s10008-017-3544-0

Lin P., F. Chai, R. Zhang, G. Xu, X. Fan, X. Luo - Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) doped with gold nanoparticles, and its application to nitrite sensing, Microchim. Acta 183 (3) (2016) 1235-1241. https://doi.org/ 10.1007/s00604-016-1751-5. DOI: https://doi.org/10.1007/s00604-016-1751-5

Liu J., X. Bo, Z. Zhao, L. Guo - Highly exposed Pt nanoparticles supported on porous graphene for electrochemical detection of hydrogen peroxide in living cells, Biosensors and Bioelectronics 74 (2015) 71-77. https://doi.org/10.1016/j.bios.2015.06.042. DOI: https://doi.org/10.1016/j.bios.2015.06.042

Shabalina A.V., K. Belova - Pure Metal Nanoparticles for Selective Electrochemical Sensor of Organic Substances, Key Eng. Mater. 683 (2016) 288-294. 10.4028/www.scientific.net/KEM.683.288. DOI: https://doi.org/10.4028/www.scientific.net/KEM.683.288

Dong S., J. Xi, Y. Wu, H. Liu, C. Fu, H. Liu, F. Xiao - High loading MnO2 nanowires on graphene paper: Facile electrochemical synthesis and use as flexible electrode for tracking hydrogen peroxide secretion in live cells, Anal. Chim. Acta 853 (2015) 200-206. https://doi.org/10.1016/j.aca.2014.08.004. DOI: https://doi.org/10.1016/j.aca.2014.08.004

Ren M., X. Kang, L. Li, L. Duan, F. Liao - Electrochemical sensor based on Ni/reduced graphene oxide nanohybrids for selective detection of ascorbic acid, J. Dispersion Sci. Technol. 40 (10) (2019) 1516-1522. https://doi.org/10.1080/01932691.2019.1579653. DOI: https://doi.org/10.1080/01932691.2019.1579653

Huang L., S. Jiao, M. Li - Determination of uric acid in human urine by eliminating ascorbic acid interference on copper(II)-polydopamine immobilized electrode surface, Electrochim. Acta 121 (2014) 233-239. https://doi.org/10.1016/j.electacta.2013.12.158. DOI: https://doi.org/10.1016/j.electacta.2013.12.158

Kassem M.A., O.A. Hazazi, T. Ohsaka, M.I. Awad - Electroanalysis of Pyridoxine at Copper Nanoparticles Modified Polycrystalline Gold Electrode, Electroanalysis 28 (3) (2016) 539-545. https://doi.org/10.1002/elan.201500209. DOI: https://doi.org/10.1002/elan.201500209

Quan D. P., B. T. P. Thao, N. V. Trang, N. L. Huy, N. Q. Dung, M. U. Ahmed, T. D. Lam - The role of copper nanoparticles decorating polydopamine/graphene film as catalyst in the enhancement of uric acid sensing, J. Electroanal. Chem. 893 (2021) 115322. https://doi.org/10.1016/j.jelechem.2021.115322. DOI: https://doi.org/10.1016/j.jelechem.2021.115322

Oztekin Y., M. Tok, E. Bilici, L. Mikoliunaite, Z. Yazicigil, A. Ramanaviciene, A. Ramanavicius - Copper nanoparticle modified carbon electrode for determination of dopamine, Electrochim. Acta 76 (2012) 201-207. https://doi.org/10.1016/j.electacta. 2012.04.105. DOI: https://doi.org/10.1016/j.electacta.2012.04.105

Li Y., J. Z. Sun, C. Bian, J. H. Tong, H. P. Dong, H. Zhang, S. H. Xia - Copper nano-clusters prepared by one-step electrodeposition and its application on nitrate sensing, AIP Advances 5 (4) (2015) 041312. https://doi.org/10.1063/1.4905712. DOI: https://doi.org/10.1063/1.4905712

Davis J., M. J. Moorcroft, S. J. Wilkins, R. G. Compton, M. F. Cardosi - Electrochemical detection of nitrate and nitrite at a copper modified electrode, Analyst 125 (4) (2000) 737-742.https://doi.org/10.1039/A909762G. DOI: https://doi.org/10.1039/a909762g

Manoj D., R. Saravanan, J. Santhanalakshmi, S. Agarwal, V. K. Gupta, R. Boukherroub - Towards green synthesis of monodisperse Cu nanoparticles: An efficient and high sensitive electrochemical nitrite sensor, Sensors and Actuators B: Chemical 266 (2018) 873-882. https://doi.org/10.1016/j.snb.2018.03.141. DOI: https://doi.org/10.1016/j.snb.2018.03.141

Karwowska M., A. Kononiuk - Nitrates/Nitrites in Food—Risk for Nitrosative Stress and Benefits, Antioxidants 9 (3) (2020) 241. https://doi.org/10.3390/antiox9030241. DOI: https://doi.org/10.3390/antiox9030241

Liu Z., Y. Zhou, S. Xu, S. Ren, Z. Zhang, Development of a chemiluminescence detector for analysis of nitrite in biological samples, Proceedings Volume 4414, International Conference on Sensor Technology (ISTC 2001), 2001.https://doi.org/ 10.1117/12.440172 DOI: https://doi.org/10.1117/12.440172

Jedličková V., Z. Paluch, Š. Alušı́k - Determination of nitrate and nitrite by high-performance liquid chromatography in human plasma, Journal of Chromatography B 780 (1) (2002) 193-197. https://doi.org/10.1016/S1570-0232(02)00405-1. DOI: https://doi.org/10.1016/S1570-0232(02)00405-1

Ito K., Y. Takayama, N. Makabe, R. Mitsui, T. Hirokawa - Ion chromatography for determination of nitrite and nitrate in seawater using monolithic ODS columns, Journal of Chromatography A 1083 (1) (2005) 63-67. https://doi.org/10.1016/j.chroma. 2005.05.073. DOI: https://doi.org/10.1016/j.chroma.2005.05.073

Amanulla B., S. Palanisamy, S. M. Chen, T. W. Chiu, V. Velusamy, J. M. Hall, T. W. Chen, S. K. Ramaraj - Selective Colorimetric Detection of Nitrite in Water using Chitosan Stabilized Gold Nanoparticles Decorated Reduced Graphene oxide, Scientific Reports 7 (1) (2017) 14182. https://doi.org/10.1038/s41598-017-14584-6. DOI: https://doi.org/10.1038/s41598-017-14584-6

Mo R., X. Wang, Q. Yuan, X. Yan, T. Su, Y. Feng, L. Lv, C. Zhou, P. Hong, S. Sun, Z. Wang, C. Li - Electrochemical Determination of Nitrite by Au Nanoparticle/Graphene-Chitosan Modified Electrode, Sensors 18 (7) (2018) 1986. https://doi.org/10.3390/s18071986 DOI: https://doi.org/10.3390/s18071986

Kozub B.R., N.V. Rees, R.G. Compton - Electrochemical determination of nitrite at a bare glassy carbon electrode; why chemically modify electrodes?, Sensors and Actuators B: Chemical 143 (2) (2010) 539-546. https://doi.org/10.1016/j.snb.2009.09.065. DOI: https://doi.org/10.1016/j.snb.2009.09.065

Rudd S., M. Dalton, P. Buss, A. Treijs, M. Portmann, N. Ktoris, D. Evans - Selective uptake and sensing of nitrate in poly(3,4-ethylenedioxythiophene), Scientific Reports 7 (1) (2017) 16581. https://doi.org/10.1038/s41598-017-16939-5. DOI: https://doi.org/10.1038/s41598-017-16939-5

Atta N.F., A. Galal, Y.M. Ahmed, M.G. Abdelkader - Development of an Innovative Nitrite Sensing Platform Based on the Construction of an Electrochemical Composite Sensor of Polymer Coated CNTs and Decorated with Magnetite Nanoparticles, Electroanalysis 33 (6) (2021) 1510-1519. https://doi.org/10.1002/elan.202060598. DOI: https://doi.org/10.1002/elan.202060598

Dai J., D. Deng, Y. Yuan, J. Zhang, F. Deng, S. He - Amperometric nitrite sensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and poly(toluidine blue), Microchim. Acta 183 (5) (2016) 1553-1561. https://doi.org/10.1007/s00604-016-1773-z. DOI: https://doi.org/10.1007/s00604-016-1773-z

Ye D., L. Luo, Y. Ding, Q. Chen, X. Liu - A novel nitrite sensor based on graphene/polypyrrole/chitosan nanocomposite modified glassy carbon electrode, Analyst 136 (21) (2011) 4563-4569. https://doi.org/10.1039/C1AN15486A. DOI: https://doi.org/10.1039/c1an15486a

Sivakumar M., S. Mani, S. M. Chen, K. Pandi, T. W. Chen, M. C. Yu - An Electrochemical Selective Detection of Nitrite Sensor For Polyaniline Doped Graphene Oxide Modified Electrode, Int. J. Electrochem. Sci. 12 (2017). https://doi.org/10.20964/ 2017.06.24.

Dung N. T., P. N. Bach, D. L. Anh, T. T. X. Hang - Electrosynthesis of poly(1,8-diaminonaphtalene) film in aqueous medium, Vietnam Journal of Science and Technology 46 (6) (2008) 97-101.

Downloads

Published

30-12-2022

How to Cite

[1]
B. T. Hong Van, D. T. Thuy, N. L. Huy, N. T. T. Mai, T. D. Lam, and N. T. Dung, “The role of copper decorating poly(1,8-diaminonaphthalene)/graphene electrodes as a catalyst in the determination of nitrite”, Vietnam J. Sci. Technol., vol. 60, no. 6, pp. 1056–1066, Dec. 2022.

Issue

Section

Materials

Most read articles by the same author(s)