Ailanthus triphysa: a review of phytochemistry and pharmacology

Nguyen Duc Duy, Bui Huu Tai, Nguyen Thi Kim Thuy, Nguyen Thi Hanh, Quach Thi Thanh Van, Quan Cam Thuy, Bui Thi Phuong Thao, Phan Van Kiem
Author affiliations

Authors

  • Nguyen Duc Duy Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Nghia Do, Ha Noi, Viet Nam
  • Bui Huu Tai Institute of Chemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam
  • Nguyen Thi Kim Thuy Center for High Technology Research and Development, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Nguyen Thi Hanh Center for High Technology Research and Development, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Quach Thi Thanh Van VietTri University of Industry, 9 Tien Son, Tien Cat, Viet Tri, Phu Tho, Vietnam
  • Quan Cam Thuy VietTri University of Industry, 9 Tien Son, Tien Cat, Viet Tri, Phu Tho, Vietnam
  • Bui Thi Phuong Thao VietTri University of Industry, 9 Tien Son, Tien Cat, Viet Tri, Phu Tho, Vietnam
  • Phan Van Kiem Institute of Chemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam

DOI:

https://doi.org/10.15625/2525-2518/22764

Keywords:

Simaroubaceae, Ailanthus triphysa, Ailanthus malabarica, phytochemistry, pharmacology

Abstract

This article summarizes recent research reports on the chemical composition and biological activities of Ailanthus triphysa (Dennstedt) Alston. About 92 compounds have been found from this species, including 11 alkaloids, 48 ​​triterpenoids, 4 quassinoids, 5 steroids and diterpenoids, 2 flavonoids, 6 benzopyranoids, 10 fatty aldehydes, acids, and 6 other compounds. Many of the compounds have unique structures and exhibit potential biological activities including antibacterial, antioxidant, antifungal, anti-inflammatory, anticancer, and cytotoxic activities. This review aims to systematically provide research results on the botany, phytochemistry and pharmacology of Ailanthus triphysa

Downloads

Download data is not yet available.

References

1. Zhengyi W., Raven PH., Deyuan H. - Flora of China Illustrations (Oxalidaceae through Aceraceae), Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis 11 (2008) 160-164. https://www.researchgate.net/publication/259842256

2. The International Plant Names Index and World Checklist of Vascular Plants (2024). https://powo.science.kew.org/.

3. Hitotsuyanagi Y., Ozeki A., Choo C. Y., Chan K. L., Itokawa H., Takeya K. - Malabanones A and B, novel nortriterpenoids from Ailanthus malabarica DC., Tetrahedron 57 (2001) 7477-7480. https://doi.org/10.1016/S0040-4020(01)00723-2

4. Achanta P. S., Gattu R. K., Belvotagi A. R. V., Akkinepally R. R., Bobbala R. K., Achanta A. R. V. N. - New malabaricane triterpenes from the oleoresin of Ailanthus malabarica, Fitoterapia 100 (2015) 166-173. https://doi.org/10.1016/j.fitote.2014.11.022

5. Kirtikar K. R., Basu B. D. - Indian medicinal plants, Lalit Mohan Basu, Alhabad, India 1 (1933) 503–507.

6. Nadkarni A. K. - Indian materia medica, Dhootapapestiwar Prakashan Panvel 1 (1954) 57.

7. Nadkarni A. K. - Indian materia medica, Bombay Popular Prakashan, Bombay 1 (1976) 57-58.

8. Dastur J. F. - Medicinal plants of India & Pakistan, 1st edn, D.B. Taraparevala Sons and Co., Bombay, (1951) 18.

9. Chi V. V. - Dictionary of Vietnamese medicinal plants, Medicine publishing house, Hanoi 2 (2018) 841-842.

10. Loi DT. - Vietnamese Medicinal Plants and Herbs, Medicine publishing house, (2004) 912-913.

11. Aono H., Koike K., Kaneko J., Ohmoto T. - Alkaloids and quassinoids from Ailanthus malabarica, Phytochemistry 37 (1994) 579-584. https://doi.org/10.1016/0031-9422(94)85104-2

12. Joshi B. S., Kamat V. N., Gawad D. H. - Some β-carboline alkaloids of Ailanthus malabarica DC., Heterocycles 7 (1977) 193-200. https://doi.org/10.3987/s-1977-01-0193

13. Chawla A., Dev S. - A new class of triterpenoids from Ailanthus malabarica DC. derivatives of malabaricane. Tetrahedron Lett. 8 (1967) 4837-4843. https://doi.org/10.1016/S0040-4039(01)89615-5

14. Thongnest S., Boonsombat J., Prawat H., Mahidol C., Ruchirawat S. - Ailanthusins A-G and nor-lupane triterpenoids from Ailanthus triphysa, Phytochemistry 134 (2017) 98-105. https://doi.org/10.1016/j.phytochem.2016.11.007

15. Paton W. F., Paul I. C., Bajaj A. G., Dev S. - The structure of malabricol, Tetrahedron Lett. 20 (43) (1979) 4153-4154. https://doi.org/10.1016/S0040-4039(01)86530-8

16. Duy N. D., Dung D. T., Trang D. T., Bang N. A., Yen P. H., Nhiem N. X., Cuc N. T., Huong P. T. T., Dung N. V., Hoang N. H., Yen D. T. H., Thuy N. T. K., Cuong N. T., Tai B. H., Kiem P. V. - Four new tirucallane triterpenoids from the leaves of Ailanthus triphysa with anti-inflammatory activities, Chem. Biodivers. 22 (3) (2024): p. e202402584. https://doi.org/10.1002/cbdv.202402584

17. Joshi B. S., Kamat V. N., Pelletier S. W., Go K., Bhandary K. - The structure of ailanthol, a new triterpenoid from Ailanthus malabarica DC., Tetrahedron Lett. 26 (10) (1985) 1273-1276. https://doi.org/10.1016/S0040-4039(00)94868-8

18. Shu-Hua Q., Da-Gang W., Yun-Bao M., Xiao-Dong L. - Chemical constituents of Ailanthus triphysa, Zhongcaoyao 34 (7) (2003) 590-592.

19. Khan S., Fozdar B., Shamsuddin K. - Quassinoids from Ailanthus malabarica, Indian J. Chem. 21B (12) (1982) 1133-1134.

20. Shu-Hua Q., Da-Gang W., Yun-Bao M., Xiao-Dong L. - Chemical constituents of Ailanthus triphysa, Chin. J. Chem. 21 (2) (2003) 200-203. https://doi.org/10.1002/cjoc.20030210222

21. Yadav A. K., Ali Z. M., Biswal A. R., Pazhamalai V. - Phytochemical and GC-MS analysis of ethyl acetate extract of Ailanthus triphysa leaves, J. Pharm. Sci. & Res. 11 (5) (2019) 1954-1959.

22. Patil Y., Soman G., Shiney P., Wagle A. - Evaluation of in vitro antioxidant activity of herbage of aromatic plants, JCTR 10 (1) ( 2010) 2125-2129.

23. Priya C., Shrikanth P. - Antimicrobial activity of Ailanthus triphysa (Dennst.) Alston against some selected pathogenic bacteria, Research J. Pharm., Tech. 11(11) (2018) 4921-4923. https://doi.org/10.5958/0974-360X.2018.00895.8

24. Bommakanti S. S., Kundeti L. S. R., Saddanapu V., Nagaiah K. - Synthesis and cytotoxicity on human lung cancer cell lines of 2-arylidene and related analogues of malabaricol, ACS Omega 5 (23) (2020) 14069-14077. https://doi.org/10.1021/acsomega.0c01525

25. Cheong W. O., Yik S. C., Sze M. C., Maan W. C., Eng L. T., Cai L. D. S., Kong S. K., Hean C. O., Nam W. S. - Antifungal, antibacterial and cytotoxic activities of non-indigenous Medicinal Plants naturalised in Malaysia, Farmacia 68 (2020) 687-696. https://doi.org/10.31925/farmacia.2020.4.14

26. Corbett S. L., Manchester S. R. - Phytogeography and fossil history of Ailanthus (Simaroubaceae), Int. J. Plant Sci. 165 (4) (2004) 671-690.

27. Ho P. H. - An illustrated flora of Vietnam, Young publishing house 2 (2003) 384.

28. Bamgbose S. O. A., Dramane K. L., Okogun J. I. - Synthesis and preliminary pharmacological studies of 1–ethyl–β–carboline, Planta Med. 31 (2) (1977) 193-200. https://doi.org/10.1055/s-0028-1097513

29. Ajayeoba E. O., Adeniyi B. A., Okogun J. I. - Antimicrobial activity of crenatine, an alkaloid synthesized from indole, Phytother. Res. 9 (1) (1995) 69-71. https://doi.org/10.1002/ptr.2650090117

30. Takasu K., Shimogama T., Saiin C., Kim H. S., Wataya Y., Ihara M. - π-Delocalized β-carbolinium cations as potential antimalarials, Bioorg. Med. Chem. Lett. 14 (7) (2004) 1689-1692. https://doi.org/10.1016/j.bmcl.2004.01.055

31. Zhang J., Zhu N., Du Y., Bai Q., Chen X., Nan J., Qin X., Zhang X., Hou J., Wang Q., Yang J. - Dehydrocrenatidine is a novel janus kinase inhibitor, Mol. Pharmacol. 87 (4) (2015) 572-81. https://doi.org/10.1124/mol.114.095208

32. Zhao F., Tang Q., Xu J., Wang S., Li S., Zou X., Cao Z. - Dehydrocrenatidine inhibits voltage-gated sodium channels and ameliorates mechanic allodia in a rat model of neuropathic pain, Toxins 11 (4) (2019) e229. https://doi.org/10.3390/toxins11040229

33. Kwon H. C., Lee B. G., Kim S. H., Jung C. M., Hong S. Y., Han J. W., Lee H. W., Zee O. P., Lee K. R. - Inducible nitric oxide synthase inhibitors from Melia azedarach var. Japonica, Arch. Pharm. Res. 22 (4) (1999) 410-413. https://doi.org/10.1007/BF02979067

34. Gabriel R. S., Amaral A. C. F., Lima I. C., Cruz J. D., Garcia A. R., Souza H. A. S., Adade C. M., Vermelho A. B., Alviano C. S., Alviano D. S., Rodrigues I. A. - β-Carboline-1-propionic acid alkaloid: antileishmanial and cytotoxic effects, Rev. Bras. Farmacogn. 29 (6) (2019) 755-762. https://doi.org/10.1016/j.bjp.2019.08.002

35. Shin H. J., Lee H. S., Lee D.S. - The synergistic antibacterial activity of 1-acetyl-β-carboline and beta-lactams against methicillin-resistant Staphylococcus aureus (MRSA), J. Microbiol. Biotechnol. 20 (3) (2010) 501-505.

36. MacAlpine J., Daniel-Ivad M., Liu Z., Yano J., Revie N. M., Todd R. T., Stogios P. J., Sanchez H., O’Meara T. R., Tompkins T. A., Savchenko A., Selmecki A., Veri A. O., Andes D. R., Fidel P. L., Robbins N., Nodwell J., Whitesell L., Cowen L. E. - A small molecule produced by Lactobacillus species blocks Candida albicans filamentation by inhibiting a DYRK1-family kinase, Nat. Commun. 12 (1) (2021) 6151. https://doi.org/10.1038/s41467-021-26390-w

37. Hyun K. A., Xu Y., Boo K. H., Hyun C. G. - 1-acetyl-β-carboline from a Jeju gotjawal strain Lentzea sp. JNUCC 0626 and its melanogenic stimulating activity in B16F10 melanoma cells, Molecules 29 (19) (2024) e4586. https://doi.org/10.3390/molecules29194586

38. Sheng T., Kong M., Wang Y., Wu H., Gu Q., Chuang A. S., Li S., Gao X. - Discovery and preliminary mechanism of 1-carbamoyl β-carbolines as new antifungal candidates, Eur. J. Med. Chem. 222 (2021) e113563. https://doi.org/10.1016/j.ejmech.2021.113563

39. Cho S. K., Jeong M., Jang D. S., Choi J. H. - Anti-inflammatory effects of canthin-6-one alkaloids from Ailanthus altissima, Planta Med. 84 (8) (2018) 527-535. https://doi.org/10.1055/s-0043-123349

40. Anderson L.A., Harris A., Phillipson J. D. - Production of cytotoxic canthin-6-one alkaloids by Ailanthus altissima plant cell cultures, J. Nat. Prod. 46 (3) (1983) 374-378. https://doi.org/10.1021/np50027a014

41. Ferreira M. E., Nakayama H., Arias A. R. D., Schinini A., Bilbao N. V. D., Serna E., Lagoutte D., Soriano A. F., Poupon E., Hocquemiller R., Fournet A. - Effects of canthin-6-one alkaloids from Zanthoxylum chiloperone on Trypanosoma cruzi-infected mice. J. Ethnopharmacol. 109 (2) (2007) 258-63. https://doi.org/10.1016/j.jep.2006.07.028

42. Srinivas P. V., Rao R. R., Rao J. M. - Two new tetracyclic triterpenes from the heartwood of Ailanthus excelsa Roxb., Chem. Biodivers. 3 (8) (2006) 930-934. https://doi.org/10.1002/cbdv.200690095

43. Poehland B. L., Carté B. K., Francis T. A., Hyland L. J., Allaudeen H. S., Troupe N. - In vitro antiviral activity of dammar resin triterpenoids, J. Nat. Prod. 50 (4) (1987) 706-713. https://doi.org/10.1021/np50052a022

44. Kim G. S., Jeong T. S., Kim Y. O., Baek N. I., Cha S. W., Lee J. W., Song K. S. - Human acyl-CoA:cholesterol acyltransferase-inhibiting dammarane triterpenes from Rhus chinensis, J. Korean Soc. Appl. Biol. Chem. 53 (4) (2010) 417-421. https://doi.org/10.3839/jksabc.2010.064

45. Lee D. G., Chang Y. S., Park Y. K., Hahm K. S., Woo E. R. - Antimicrobial effects of ocotillone isolated from stem bark of Ailanthus altisshima, J. Microbiol. Biotechnol. 12 (5) (2002) 854-857.

46. Lee D., Kim K. H., Jang T., Kang K. S. - (-)-Leucophyllone, a tirucallane triterpenoid from Cornus walteri, enhances insulin secretion in INS-1 cells, Plants 10 (3) (2021) e431. https://doi.org/10.3390/plants10030431

47. Phuong D. T. L., Cong N. T., Phuong N. V., Hue N. T., Vuong N. Q., Lien N. T. P., Ho D. V., Tuan N. L., Nghia N. T., Tuyen V. T. T., Hang N. T., Thanh L. - Chemical constituents, cytotoxicity, and molecular docking studies of Tetragonula iridipennis propolis, Nat. Prod. Commun. 18 (12) (2023). https://doi.org/10.1177/1934578X231219088

48. Biavatti M. W., Vieira P. C., Silva M. F. G. F. D., Fernandes J. B., Albuquerque S. - Triterpenoid constituents of Raulinoa echinata, J. Nat. Prod. 65 (4) (2002) 562-565. https://doi.org/10.1021/np0103970

49. Kurimoto S. I., Kashiwada Y., Lee K. H., Takaishi Y. - Triterpenes and a triterpene glucoside from Dysoxylum cumingianum, Phytochemistry 72 (17) (2011) 2205-2211. https://doi.org/10.1016/j.phytochem.2011.08.002

50. Wojtkiewicz A. M., Oleksy G., Malinowska M. A., Janeczko T. - Enzymatic synthesis of a skin active ingredient - glochidone by 3-ketosteroid dehydrogenase from Sterolibacterium denitrificans, J. Steroid Biochem. Mol. Biol. 241 (2024) 106513. https://doi.org/10.1016/j.jsbmb.2024.106513

51. Chen H., Miao L., Huang F., Yu Y., Q. Peng, Liu Y., Li X., Liu H. - Glochidiol, a natural triterpenoid, exerts its anti-cancer effects by targeting the colchicine binding site of tubulin, Invest. New Drugs 39 (2) (2021) 578-586. https://doi.org/10.1007/s10637-020-01013-1

52. Puapairoj P., Naengchomnong W., Kijjoa A., Pinto M. M., Pedro M., Nascimento M. S., Silva A. M., Herz W. - Cytotoxic activity of lupane-type triterpenes from Glochidion sphaerogynum and Glochidion eriocarpum two of which induce apoptosis, Planta Med. 71 (3) (2005) 208-213. https://doi.org/10.1055/s-2005-837818

53. Anyam J., Alenezi S., Krishna R., Gray B., Ungogo B., Igoli J. - Antitrypanosomal activity of glochidonol and salacinin C from Phyllanthus muellerianus, Niger. J. Chem. Res. 29 (2024) 053-061.

54. Tundis R., Menichini F., Loizzo M. R. - Chapter 1 - Recent insights into the emerging role of triterpenoids in cancer therapy: Part II, Stud. Nat. Prod. Chem. 41 (2014) 01-32. https://doi.org/10.1016/B978-0-444-63294-4.00001-2

55. Patil, V. M. - Chapter 5 - Structure-activity relationship studies on anti-cancer bioactive natural products, Stud. Nat. Prod. Chem., (2022) 147-199. https://doi.org/10.1016/B978-0-12-823944-5.00013-2

56. Laszczyk M. N. - Pentacyclic triterpenes of the lupane, oleanane and ursane group as tools in cancer therapy, Planta Med. 75 (15) (2009) 1549-1560. https://doi.org/10.1055/s-0029-1186102

57. Melo C. M., Carvalho K. M., Neves J. C., Morais T. C., Rao V. S., Santos F. A. Brito G. A., Chaves M. H. - α,β-amyrin, a natural triterpenoid ameliorates L-arginine-induced acute pancreatitis in rats, World J. Gastroenterol. 16 (34) (2010) 4272-80. https://doi.org/10.3748/wjg.v16.i34.4272

58. Han G., Lee D. G. - Antibacterial mode of action of β-amyrin promotes apoptosis-like death in Escherichia coli by producing reactive oxygen species, J. Microbiol. Biotechnol. 32 (12) (2022) 1547-1552. https://doi.org/10.4014/jmb.2209.09040

59. Joshi B., Sharma R., Khare A. - Ailanthus quassinoids and their biological activity, Nat. Prod. Commun. 2 (8) (2019) 869-880. https://doi.org/10.1177/1934578X0700200816

60. Villaseñor I. M., Angelada J., Canlas A. P., Echegoyen D. - Bioactivity studies on β-sitosterol and its glucoside, Phytother. Res. 16 (5) (2002) 417-421. https://doi.org/10.1002/ptr.910

61. Bouic P. J. D., Etsebeth S., Liebenberg R. W., Albrecht C. F., Pegel K., Van P. P. J. - β-sitosterol and β-sitosterol glucoside stimulate human peripheral blood lymphocyte proliferation: Implications for their use as an immunomodulatory vitamin combination, Int. J. Immunopharmacol. 18 (12) (1996) 693-700. https://doi.org/10.1016/S0192-0561(97)85551-8

62. Njinga N. S., Sule M. I., Pateh U. U., Hassan H. S., Abdullahi S. T., Ache R. N. - Isolation and antimicrobial activity of β-sitosterol-3-O-glucoside from Lannea Kerstingii Engl. & K. Krause (Anacardiacea), JHASNU 06 (01) (2016) 004-008. https://doi.org/10.1055/s-0040-1708607

63. Manríquez J. J. T., Hernández M. A. L, Chávez J. R. M., González S. R., Serafín I. R. H., Rodríguez G. U., Torres J. M. V. - Isolation and cytotoxic activity of phyllocladanes from the roots of Acacia schaffneri (Leguminosae), Molecules 25 (17) (2020) e3944. https://doi.org/10.3390/molecules25173944

64. Zhang F., Guo Z., Wu M., Lin G., Chen H., Zheng H., Zhang D., Jiang M., Xie Y., Chen Y., Lian D., Shen A., Peng J. - Trifolin attenuates hypertension-mediated cardiac injury by inhibiting cardiomyocyte apoptosis: Mechanistic insights and therapeutic potential, Eur. J. Pharmacol. 985 (2024) e177125. https://doi.org/10.1016/j.ejphar.2024.177125

65. Kim M. J., Kwon S. B., Kim M. S., Jin S. W., Ryu H. W., Oh S. R., Yoon D. Y. - Trifolin induces apoptosis via extrinsic and intrinsic pathways in the NCI-H460 human non-small cell lung-cancer cell line, Phytomedicine 23 (10) (2016) 998-1004. https://doi.org/10.1016/j.phymed.2016.05.009

66. Akter M., Parvin M. S., Hasan M. M., Rahman M. A. A., Islam M. E. - Anti-tumor and antioxidant activity of kaempferol-3-O-alpha-L-rhamnoside (Afzelin) isolated from Pithecellobium dulce leaves, BMC Complement. Med. Ther. 22 (1) (2022) e169. https://doi.org/10.1186/s12906-022-03633-x

67. Gumisiriza H., Olet E., Mwikali L., Akatuhebwa R., Omara T., Lejju J., Sesaazi C. - Antibacterial and antioxidant activities of flavonoids, phenolic and flavonoid glycosides from Gouania longispicata leaves, Microbiol. Res. 15 (2024) 2085-2101. https://doi.org/10.3390/microbiolres15040140

68. Tatsimo S. J. N., Tamokou J. D. D., Havyarimana L., Csupor D., Forgo P., Hohmann J., Kuiate, J. R., Tane P. - Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum, BMC Res. Notes 5(1) (2012) e158. https://doi.org/10.1186/1756-0500-5-158

69. Gao X. Y., Li X. Y., Zhang C. Y., Bai C. Y. - Scopoletin: a review of its pharmacology, pharmacokinetics, and toxicity, Front. Pharmacol. 15 (2024) e1268464. https://doi.org/10.3389/fphar.2024.1268464

70. Rollinger J. M., Hornick A., Langer T., Stuppner H., Prast H. - Acetylcholinesterase inhibitory activity of scopolin and scopoletin discovered by virtual screening of natural products, J. Med. Chem. 47 (25) (2004) 6248-6254. https://doi.org/10.1021/jm049655r

71. Chexal K. K., Fouweather C., Holker J. S. E. - The biosynthesis of fungal metabolites. Part VII. Production and biosynthesis of 4,7-dimethoxy-5-methylcoumarin in Aspergillus variecolor, J. Chem. Soc., Perkin Transactions 1 (6) (1975) 554-556. https://doi.org/10.1039/P19750000554

72. Li Y., Wang S. F., Zhao Y. L., Liu K. C., Wang X. M., Yang Y. P., Li X. L. - Chemical constituents from Clematis delavayi var. spinescens. Molecules 14 (11) (2009) 4433-4439. https://doi.org/10.3390/molecules14114433

73. Nabi M., Zargar M. I., Tabassum N., Ganai B. A., Wani S. U. D., Alshehri S., Alam P., Shakeel F. - Phytochemical pofiling and antibacterial activity of methanol leaf extract of Skimmia anquetilia, Plants 11 (13) (2022) 1667. https://doi.org/10.3390/plants11131667

74. Mustapha A., AlSharksi A. N., Eze U. A., Samaila R. K., Ukwah B. N., Anyiam A. F., Samarasinghe S., Ibrahim M. A. - Phytochemical composition, in silico molecular docking analysis and antibacterial activity of Lawsonia inermis Linn leaves extracts against extended spectrum beta-lactamases-producing strains of Klebsiella pneumoniae, BioMed 4 (3) (2024) 277-292. https://doi.org/10.3390/biomed4030022

75. Chanprapai P., Kubo I., Chavasiri W. - Anti-rice pathogenic microbial activity of Persicaria sp. Extracts, Sci. Technol. Asia 23 (4) (2018) 32-41. https://doi.org/10.14456/scitechasia.2018.30

76. Ferreira F. S., Silva A. C. d., Aguiar J. C. d., Moura M. C. d., Pimentel C. S., Coelho L. C., Paiva P. M. G., Napoleão T. H., Navarro D. M. A. F. - Antimicrobial and antibiofilm activities of the essential oil from the inflorescence of Etlingera elatior (Zingiberaceae) and its main constituents (dodecanal and 1-dodecanol), J. Braz. Chem. Soc. 36 (4) (2025) e-20240215 1-10. https://doi.org/10.21577/0103-5053.20240215

77. Ciesielski V., Legrand P., Blat S., Rioux V. - New insights on pentadecanoic acid with special focus on its controversial essentiality: A mini-review, Biochimie 227 (2024) 123-129. https://doi.org/10.1016/j.biochi.2024.10.008

78. Habib N. A., Wood C. B., Apostolov K., Barker W., Hershman M. J., Aslam M., Heinemann D., Fermor B., Williamson R. C. N., Jenkins W. E. - Stearic acid and carcinogenesis, Br. J. Cancer 56 (4) (1987) 455-458. https://doi.org/10.1038/bjc.1987.223

79. Kumar R. S., Anburaj G., Subramanian A., Vasantha S., Selvam A. P. - Preliminary phytochemical investigation, antimicrobial activity and GC-MS analysis of leaf extract of Capparis zeylanica Linn, J. Pharm. Phytochemistry 8 (2019) 1399-1405.

80. Ali A., Javaid A., Shoaib A. - GC-MS analysis and antifungal activity of methanolic root extract of Chenopodium album against Sclerotium rolfsii, Planta Daninha 35 (2017) e017164713. https://doi.org/10.1590/S0100-83582017350100046

81. Pujar R. R., Bandawane D. D. - Comparative studies on protective efficacy of gentisic acid and 2-pyrocatechuic acid against 5-fluorouracil induced nephrotoxicity in Wistar rats, Indian J. Exp. Biol. 60 (4) (2022) 241-247. https://doi.org/10.56042/ijeb.v60i04.61919

82. Yuan S., Wang B., Wang M., Sun M., Wang X., Li X., Yang N., Xu X., Zheng S., Wang Q. - Antifungal mechanism of protocatechuic acid methyl ester against Botrytis cinerea in postharvest strawberry fruit, Postharvest Biol. Technol. 211 (2024) 112787. https://doi.org/10.1016/j.postharvbio.2024.112787

83. Shui G., Bao Y. M., Bo J., An L. J. - Protective effect of protocatechuic acid from Alpinia oxyphylla on hydrogen peroxide-induced oxidative PC12 cell death, Eur. J. Pharmacol. 538 (1-3) (2006) 73-79. https://doi.org/10.1016/j.ejphar.2006.03.065

84. Ameeramja J., Kanagaraj V. V., Perumal E. - Protocatechuic acid methyl ester modulates fluoride induced pulmonary toxicity in rats, Food Chem. Toxicol. 118 (2018) 235-244. https://doi.org/10.1016/j.fct.2018.05.031

85. Miklasińska M. M., Kępa M., Kulczak M., Ochwat M., Wąsik T. J. - The array of antibacterial action of protocatechuic acid ethyl ester and erythromycin on staphylococcal strains, Antibiotics 11 (7) (2022) e848. https://doi.org/10.3390/antibiotics11070848

86. Huang Z. R., Lin Y. K., Fang J. Y. - Biological and pharmacological activities of squalene and related compounds: Potential uses in cosmetic dermatology, Molecules 14 (1) (2009) 540-554. https://doi.org/10.3390/molecules14010540

87. Ng K. W., Salhim S. M., Majid A. M. S. A., Chan K. L. - Anti-angiogenic and cytotoxicity studies of some medicinal plants, Planta Med. 76 (9) (2010) 935-940. https://doi.org/10.1055/s-0029-1240813

Downloads

Published

12-12-2025

How to Cite

[1]Nguyen Duc Duy, “Ailanthus triphysa: a review of phytochemistry and pharmacology”, Vietnam J. Sci. Technol., vol. 63, no. 6, pp. 1050–1073, Dec. 2025.

Issue

Section

Review

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.