Promoting use of waste materials for sustainable geopolymer concrete: a scientometric review
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/20044Keywords:
: Scientometric review, Source Materials, , Geopolymer Concrete, Bibliometric data, ScopusAbstract
The building industry considerably contributes to the use of energy, depletion of resources and emission of carbon dioxide, all of which harm the environment. Currently, this industry is moving away from cement and natural materials in favour of substitute materials lowering environmental impacts and fostering sustainability. Fly ash, metakaolin, silica fume, slag, and rice husk ash are some of the wastes that are high in aluminosilicate contents and are examples of wastes produced by industries and agriculture that can be used to make geopolymer concrete, which is a substitute in Ordinary Portland cement concrete due to its exemplary strength, stabilization at elevated temperatures, denser microstructure, elevated bond strength and opposing chemical nature. This review investigates using various industrial wastes to be used as source materials in geopolymer concrete in the scientometric review using bibliometric from Scopus. Examination of the bibliometric data that is currently available and identifying relevant publication areas, year of publication, keywords, co-authorship, countries and papers with the most citations etc. have been used to assess the current state of the art.
Downloads
References
1. Wilmoth J., Menozzi C., Bassarsky L. - Why population growth matters for sustainable development Policy Brief No 130 Key messages, 2022.
2. Assi L. N., Carter K., Deaver E., Ziehl P. - Review of availability of source materials for geopolymer/sustainable concrete, J Clean Prod. 263 (2020). https://doi.org/10.1016/ j.jclepro.2020.121477
3. Miller S. A., Horvath A., Monteiro P. J. M. - Readily implementable techniques can cut annual CO2 emissions from the production of concrete by over 20 %, Environmental Research Letters 11 (2016). https://doi.org/10.1088/1748-9326/11/7/074029
4. Shi C., Jiménez A. F., Palomo A. - New cements for the 21st century: The pursuit of an alternative to Portland cement, Cem Concr Res. 41 (2011) 750-763. https://doi.org/ 10.1016/j.cemconres.2011.03.016
5. Huntzinger D. N., Eatmon T. D. - A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies, J. Clean Prod. 17 (2009) 668-675. https://doi.org/10.1016/j.jclepro.2008.04.007
6. Althoey F., Zaid O., Alsulamy S., Martínez-García R., De Prado Gil J., Arbili M. M. - Determining engineering properties of ultra-high-performance fiber-reinforced geopolymer concrete modified with different waste materials. PLoS One. 18 (2023). https://doi.org/10.1371/journal.pone.0285692
7. Van Deventer J. S. J., Provis J. L., Duxson P. - Technical and commercial progress in the adoption of geopolymer cement, Miner Eng. 29 (2012) 89-104. https://doi.org/ 10.1016/j.mineng.2011.09.009
8. Provis J. L., Bernal S. A. - Milestones in the Analysis of Alkali-Activated, J Sustain Cem Based Mater. 4 (2014) 74-84. https://doi.org/10.1080/21650373.2014.958599
9. Nicholson C., Fletcher R., Miller N., Stirling C., Morris J., Hodges S., Mackenzie K., Schmücker M. - Building Innovation through Geopolymer Technology, Chemisty in New Zealand, 2005, pp. 10-12.
10. Provis J. L. - Alkali-activated materials. Cem Concr Compos 114 (2017) 40-48. https://doi.org/10.1016/j.cemconres.2017.02.009
11. Mehta P. K. - Reducing the environmental impact of concrete, Concrete International, 2001, pp. 61-66. https://doi.org/10.1016/S1351-4210(05)70693-4
12. Provis J. L., Palomo A., Shi C. - Advances in understanding alkali-activated materials, Cem Concr Res. 78 (2015) 110-125. https://doi.org/10.1016/j.cemconres.2015.04.013
13. Scrivener K. L., Kirkpatrick R. J. - Innovation in use and research on cementitious material, Cem Concr Res. 38 (2008) 128-136. https://doi.org/10.1016/j.cemconres. 2007.09.025
14. Fernandez-Jimenez A., García-Lodeiro I., Palomo A. - Durability of alkali-activated fly ash cementitious materials, J. Mater. Sci. 42 (2007) 3055-3065. https://doi.org/10.1007/ s10853-006-0584-8
15. Jumaa N. H., Ali I. M., Nasr M. S., Falah M. W. - Strength and microstructural properties of binary and ternary blends in fly ash-based geopolymer concrete, Case Studies in Construction Materials 17 (2022) e01317. https://doi.org/10.1016/ j.cscm.2022.e01317
16. Davidovits J. - Geopolymer chemistry and sustainable Development, The Poly (sialate) terminology: a very useful and simple model for the promotion and understanding of green-chemistry. Geopolymer: Green Chemisty and Sustainable development solutions. 9-16 (1980)
17. Yombi Anne M., Chand J. - Geo-polymer concrete- a concrete for sustainable environment, In: IOP Conference Series: Earth and Environmental Science, Institute of Physics, 2023.
18. Akhtar N., Ahmad T., Husain D., Majdi A., Alam M. T., Husain N., Wayal A. K. S. - Ecological footprint and economic assessment of conventional and geopolymer concrete for sustainable construction, J. Clean Prod. 380 (2022). https://doi.org/10.1016/j.jclepro. 2022.134910
19. Samarakoon M. H., Ranjith P. G., Rathnaweera T. D., Perera M. S. A. - Recent advances in alkaline cement binders: A review, J. Clean Prod. 227 (2019) 70-87. https://doi.org/ 10.1016/j.jclepro.2019.04.103
20. Singh B., Ishwarya G., Gupta M., Bhattacharyya S. K. - Geopolymer concrete: A review of some recent developments, Constr Build Mater. 85 (2015) 78-90. https://doi.org/ 10.1016/j.conbuildmat.2015.03.036
21. Pan Z., Cheng L., Lu Y., Yang N. - Hydration products of alkali-activated slag – red mud cementitious material, Cem. Concr. Res. 32 (2002) 357-362.
22. Hajjaji W., Andrejkovičová S., Zanelli C., Alshaaer M., Dondi M., Labrincha J. A., Rocha F. - Composition and technological properties of geopolymers based on metakaolin and red mud, Mater Des. 52 (2013) 648-654. https://doi.org/ 10.1016/j.matdes.2013.05.058
23. Albitar M., Ali M. S. M., Visintin P., Drechsler M. - Durability evaluation of geopolymer and conventional concretes, Constr Build. Mater. 136 (2017) 374-385. https://doi.org/10.1016/j.conbuildmat.2017.01.056
24. Orhan T. Y., Karakoç M. B., Özcan A. - Durability characteristics of slag based geopolymer concrete modified with crumb rubber, Constr Build. Mater. 404 (2023) 132851. https://doi.org/10.1016/j.conbuildmat.2023.132851
25. Karthik A., Sudalaimani K., Vijayakumar C. T., Saravanakumar S. S. - Effect of bio-additives on physico-chemical properties of fly ash-ground granulated blast furnace slag based self cured geopolymer mortars, J. Hazard Mater. 361 (2019) 56-63. https://doi.org/10.1016/j.jhazmat.2018.08.078
26. Farooq F., Jin X., Faisal Javed M., Akbar A., Izhar Shah M., Aslam F., Alyousef R. Geopolymer concrete as sustainable material: A state of the art review, Constr Build Mater. 306 (2021) 124762. https://doi.org/10.1016/j.conbuildmat.2021.124762
27. Petermann J., Saeed A., Hammons M. - Review, Alkali activated Geopolymers A literature, Air Force Research Laboratory, Materials and Manufacturing Directorate, 2012.
28. Pacheco-Torgal F., Castro-Gomes J., Jalali S. - Alkali-activated binders: A review, Constr Build Mater. 22 (2008) 1305-1314. https://doi.org/10.1016/j.conbuildmat. 2007.10.015
29. Senapati M. R. - Fly ash from thermal power plants - waste management and overview, Curr Sci. 100 (2011) 1791-1794.
30. Chamundeswari P., Rao V. R. - Effect of Activator Ratio on Strength Properties of Geopolymer Concrete, Technology Singap World Sci. 8 (2017) 559-564.
31. Yılmaz Y., Seyis S. - Mapping the scientific research of the life cycle assessment in the construction industry: A scientometric analysis, Build Environ 204 (2021). https://doi.org/10.1016/j.buildenv.2021.108086
32. Ahmad W., Ahmad A., Ostrowski K. A., Aslam F., Joyklad P. - A scientometric review of waste material utilization in concrete for sustainable construction, Case Studies in Construction Materials 15 (2021). https://doi.org/10.1016/j.cscm.2021.e00683
33. Hosseini M. R., Martek I., Zavadskas E. K., Aibinu A. A., Arashpour M., Chileshe N. - Critical evaluation of off-site construction research: A Scientometric analysis, Autom Constr. 87 (2018) 235-247. https://doi.org/10.1016/j.autcon.2017.12.002
34. Mingers J., Leydesdorff L. - A review of theory and practice in scientometrics, Eur. J. Oper Res. 246 (2015) 1-19. https://doi.org/10.1016/j.ejor.2015.04.002
35. Amin M. N., Ahmad W., Khan K., Sayed M. M. - Mapping Research Knowledge on Rice Husk Ash Application in Concrete: A Scientometric Review, Materials 15 (2022). https://doi.org/10.3390/ma15103431
36. Ghosh A., Hasan A. - Recent patterns and trends in sustainable concrete research in India: A five-year Scientometric review, In: Materials Today: Proceedings, Elsevier Ltd, 2020, pp. 910-916.
37. Matsimbe J., Dinka M., Olukanni D., Musonda I. - Bibliometric trends of geopolymer research in Sub-Saharan Africa. Mater Today Commun. 35 (2023). https://doi.org/ 10.1016/j.mtcomm.2023.106082
38. Zakka W. P., Abdul Shukor Lim N. H., Chau Khun M. - A scientometric review of geopolymer concrete, J. Clean Prod. 280 (2021). https://doi.org/10.1016/ j.jclepro.2020.124353
39. Elmesalami N., Celik K. - A critical review of engineered geopolymer composite: A low-carbon ultra-high-performance concrete, Constr Build Mater. 346 (2022). https://doi.org/ 10.1016/j.conbuildmat.2022.128491
40. Van Eck N. J., Waltman L. - VOSviewer Software, 2021.
41. Ahmad W., Ahmad A., Ostrowski K. A., Aslam F., Joyklad P. - A scientometric review of waste material utilization in concrete for sustainable construction, Case Studies in Construction Materials 15 (2021) e00683. https://doi.org/10.1016/j.cscm.2021.e00683
42. Gourley J. T., Johnson G. B. - Developments In Geopolymer Precast Concrete, In: International Workshop on Geopolymers and Geopolymer Concrete, Perth, Australia, 2005.
43. Ranganathan A., Malathy R. - A profound microscopic study on geopolymer concrete. International Academy of Science, Engineering and Technology 3 (2014) 7-14.
44. Rangan B. V. - Geopolymer concrete for environmental protection, Indian Concrete Journal 88 (2014) 41-59.
45. Hardjito D., Rangan B. V. V., Djwantoro H. - Development and Properties of Low-Calcium Fly Ash-based Geopolymer Concrete, Perth, Australia, 2005.
46. Hardjito D., Wallah S. E., Sumajouw D. M. J., Rangan B. V. - Introducing Fly Ash-Based Geopolymer Concrete: Manufacture and Engineering Properties, In: CI-premier pte LTD, 2005.
47. Xie T., Ozbakkaloglu T. - Microstructure and mechanical properties of ambiently-cured blended coal ash-based geopolymer concrete, Materials Science Forum 857 (2016) 400-404. https://doi.org/10.4028/www.scientific.net/MSF.857.400
48. Aslani F., Asif Z. - Properties of Ambient-Cured Normal and Heavyweight Geopolymer Concrete Exposed to High Temperatures, Materials 12 740 (2019). https://doi.org/ 10.3390/ma12050740
49. Nath P., Sarker P. K. - Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete, Constr Build Mater 130 (2017) 22-31. https://doi.org/10.1016/j.conbuildmat.2016.11.034
50. Nath P., Sarker P. K. K. - Geopolymer concrete for ambient curing condition, In: Australasian Structural Engineering Conference 2012: The past, present and future of Structural Engineering, 2012, pp. 1-9.
51. Rajamane N. P., Peter J. A., Ambily P. S. - Availability and management of fly ash in India, Indian Concrete Journal 79 (2005) 40-42.
52. Yousuf A., Manzoor S. O., Youssouf M., Malik Z. A. - Fly Ash: Production and Utilization in India-An Overview Article, Journal of Materials and Environmental Sciences (2020)
53. John S. K., Nadir Y., Girija K. - Effect of source materials, additives on the mechanical properties and durability of fly ash and fly ash-slag geopolymer mortar: A review, Constr Build Mater 280 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122443
54. Vargas A. S. de., Denise C. C. D. M., Vilela A. C. F. F., Silva F. J. Da, Pavão B., Veit H. - The effects of Na2O/SiO2molar ratio, curing temperature and age on compressive strength, morphology and microstructure of alkali-activated fly ash-based geopolymers, Cem. Concr. Compos 33 (2011) 653-660. https://doi.org/10.1016/j.cemconcomp.2011.03.006
55. Raza A., Hechmi El Ouni M., Azab M., Ali K., Haider H., Rashedi A. - A scientometric review on mechanical and durability performance of geopolymer Paste: Effect of various raw materials, Constr Build Mater 345 (2022). https://doi.org/10.1016/j.conbuildmat. 2022.128297
56. Hemalatha T., Ramaswamy A. - A review on fly ash characteristics – Towards promoting high volume utilization in developing sustainable concrete, J. Clean Prod. 147 (2017) 546-559. https://doi.org/10.1016/j.jclepro.2017.01.114
57. Ionescu B. A., Barbu A. M., Lăzărescu A. V., Rada S., Gabor T., Florean C. - The Influence of Substitution of Fly Ash with Marble Dust or Blast Furnace Slag on the Properties of the Alkali-Activated Geopolymer Paste, Coatings 13 (2023). https://doi.org/ 10.3390/coatings13020403
58. Sindhunata, Van Deventer J. S. J., Lukey G. C., Xu H. - Effect of curing temperature and silicate concentration on fly-ash-based geopolymerization, Ind. Eng. Chem. Res. 45 (2006) 3559-3568. https://doi.org/10.1021/ie051251p
59. Djwantoro H., Rangan B. V. - Development and Properties of Low-Calcium Fly Ash-based Geopolymer Concrete, 2005.
60. Hardjito D., Wallah S. E., Sumajouw D. M. J., Rangan B. V. - On the Development of Fly Ash-Based Geopolymer Concrete (2005) 467-472.
61. Jindal B. B., Parveen Singhal D., Goyal A. - Predicting Relationship between Mechanical Properties of Low Calcium Fly Ash-Based Geopolymer Concrete, Transactions of the Indian Ceramic Society 76 (2017) 258-265. https://doi.org/10.1080/0371750X.2017. 1412837
62. Chatterjee A. K., Anjan K. Chatterjee, Chatterjee A. K. - Indian Fly Ashes: Their Characteristics and Potential for Mechanochemical Activation for Enhanced Usability, Journal of Materials in Civil Engineering © Asce 23 (2011) 783-788. https://doi.org/ 10.1017/CBO9781107415324.004
63. Muhammad N., Baharom S., Amirah N., Ghazali M., Alias N. A. - Effect of Heat Curing Temperatures on Fly Ash-Based Geopolymer Concrete, International Journal of Engineering and Technology 8 (2019) 15-19.
64. İlkentapar S., Atiş C. D., Karahan O., Görür Avşaroğlu E. B. - Influence of duration of heat curing and extra rest period after heat curing on the strength and transport characteristic of alkali activated class F fly ash geopolymer mortar, Constr Build Mater 151 (2017) 363-369. https://doi.org/10.1016/j.conbuildmat.2017.06.041
65. Hardjito D., Wallah S., Sumajouw D., Rangan B. V. - On the Development of Fly Ash-Based Geopolymer Concrete, ACI Mater J. (2004) 467-472.
66. Fernández-Jiménez A., Palomo A. - Characterisation of fly ashes. Potential reactivity as alkaline cements, Fuel 82 (2003) 2259-2265. https://doi.org/10.1016/S00162361 (03)00194-7
67. Sofi M., van Deventer J. S. J., Mendis P. A., Lukey G.C. - Engineering properties of inorganic polymer concretes (IPCs), Cem. Concr Res. 37 (2007) 251-257. https://doi.org/ 10.1016/j.cemconres.2006.10.008
68. Diaz E. I., Allouche E. N., Eklund S. - Factors affecting the suitability of fly ash as source material for geopolymers, Fuel 89 (2010) 992-996. https://doi.org/10.1016/j.fuel.2009.09.012
69. Thokchom S., Ghosh D., Ghosh S. - Acid Resistance of Fly ash based Geopolymer mortars, International Journal of Recent Trends in Engineering 1 (2009) 36-40. https://doi.org/10.1111/j.1365-2966.2008.13647.x
70. Temuujin J., Minjigmaa A., Lee M., Chen-Tan N., Van Riessen A. - Characterisation of class F fly ash geopolymer pastes immersed in acid and alkaline solutions, Cem. Concr. Compos 33 (2011) 1086-1091. https://doi.org/10.1016/j.cemconcomp. 2011.08.008
71. Shi C., Stegemann J. A. - Acid corrosion resistance of different cementing materials, Cem Concr Res. 30 (2000) 803-808. https://doi.org/10.1016/S0008-8846(00)00234-9
72. Thokchom S., Ghosh P., Ghosh S. S T., P. G. S G. - Performance of Fly ash Based Geopolymer Mortars in Sulphate Solution, Journal of Engineering Science and Technology Review 3 (2010) 36-40. https://doi.org/10.25103/jestr.031.07
73. Bondar D., Lynsdale C. J., Milestone N. B., Hassani N. - Sulfate Resistance of Alkali Activated Pozzolans, Int. J. Concr. Struct. Mater. 9 (2015) 145-158. https://doi.org/ 10.1007/s40069-014-0093-0
74. Kong D., Sanjayan, J., Sagoe-Crentsil, K.: - Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures, Cem Concr Res. 37 (2007) 1583-1589. https://doi.org/10.1016/j.cemconres.2007.08.021
75. Kong D. L. Y., Sanjayan J. G. - Damage behavior of geopolymer composites exposed to elevated temperatures, Cem. Concr. Compos 30 (2008) 986-991. https://doi.org/ 10.1016/j.cemconcomp.2008.08.001
76. Zhao R., Sanjayan J. G., Zhao R. - Geopolymer and Portland cement concretes in simulated fire, Magazine of Concrete Research 63 (2011) 163-173. https://doi.org/ 10.1680/macr.9.00110
77. Thakkar S., Dave U., Patel J. - Effect of high temperature on fly ash-based alkali activated concrete compared to Portland cement concrete, International Journal of Materials and Structural Integrity 13 (2019) 257-273. https://doi.org/10.1504/ IJMSI.2019.103212
78. Nakum A. V., Arora N. K. - Fresh and mechanical characterization of fly ash/slag by incorporating steel fiber in self-compacted geopolymer concrete, Constr Build Mater 368 (2023). https://doi.org/10.1016/j.conbuildmat.2023.130481
79. Lazorenko G., Kasprzhitskii A., Fini E. H. - Sustainable construction via novel geopolymer composites incorporating waste plastic of different sizes and shapes, Constr Build. Mater 324 (2022). https://doi.org/10.1016/j.conbuildmat.2022.126697
80. Amran M., Debbarma S., Ozbakkaloglu T. - Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties, Constr Build Mater 270 (2021). https://doi.org/10.1016/j.conbuildmat.2020.121857
81. Thakkar S., Dave U., Gupta R., Desai P. - Process parameters affecting compressive strength of ambient cured alkali activated fly ash and bottom ash concrete, Indian Concrete Journal 94 (2020) 53-61.
82. Oyebisi S., Alomayri T. - Artificial Intelligence-based Prediction of Strengths of Slag-ash-based Geopolymer Concrete using Deep Neural Networks, Constr Build Mater 400 (2023) 1-20.
83. Ahmed H. Q., Jaf D. K., Yaseen S. A. - Flexural strength and failure of geopolymer concrete beams reinforced with carbon fibre-reinforced polymer bars, Constr Build Mater 231 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117185
84. Neupane K. - Fly ash and GGBFS based powder-activated geopolymer binders: A viable sustainable alternative of portland cement in concrete industry, Mechanics of Materials 103 (2016) 110-122. https://doi.org/10.1016/j.mechmat.2016.09.012
85. Ariffin M. A., Bhutta M., Hussin M., Mohd Tahir M., Aziah N. - Sulfuric acid resistance of blended ash geopolymer concrete, Constr Build Mater 43 (2013) 80-86. https://doi.org/10.1016/j.conbuildmat.2013.01.018
86. Yang S., Zhongzi X., Mingshu T. - The Process of Sulfate Attack on Cement Mortars, Advn Cem. Bas. Mat. 7355 (1996) 1-5.
87. Yang K. H., Song J. K. - Workability Loss and Compressive Strength Development of Cementless Mortars Activated by Combination of Sodium Silicate and Sodium Hydroxide. https://doi.org/10.1061/ASCE0899-1561200921:3119
88. Bernal S. A., Mejía de Gutiérrez R., Provis J. L., Mejía R., Gutiérrez D., Provis J. L. - Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends, Constr Build Mater 33 (2012) 99-108. https://doi.org/10.1016/j.conbuildmat.2012.01.017
89. Emin A., Alzeebaree R., Aljumaili O., Nis A., Eren M., Humur G., Abdulkadir E. - Mechanical and durability properties of fly ash and slag based geopolymer concrete. Advances in Concrete Construction 4 (2018) 345-362.
90. Pacheco-Torgal F., Abdollahnejad Z., Camões A. F. F., Jamshidi M., Ding Y. - Durability of alkali-activated binders: A clear advantage over Portland cement or an unproven issue? Constr Build Mater 30 (2012) 400-405. https://doi.org/ 10.1016/j.conbuildmat.2011.12.017
91. Ramezanianpour A. A., Moeini M. A. - Mechanical and durability properties of alkali activated slag coating mortars containing nanosilica and silica fume, Constr Build Mater 163 (2018) 611-621. https://doi.org/10.1016/j.conbuildmat.2017.12.062
92. Winnefeld F., Leemann A., Lucuk M., Svoboda P., Neuroth M. - Assessment of phase formation in alkali activated low and high calcium fly ashes in building materials, Constr Build Mater 24 (2010) 1086-1093. https://doi.org/10.1016/j.conbuildmat. 2009.11.007
93. Kim Y., Lee B., Saraswathy V., Kwon S. - Strength and Durability Performance of Alkali-Activated Rice Husk Ash Geopolymer Mortar, The Scientific World Journal (2014)
94. Jittin V., Bahurudeen A., Ajinkya S. D. - Utilisation of rice husk ash for cleaner production of different construction products, J. Clean Prod. 263 (2020). https://doi.org/10.1016/j.jclepro.2020.121578
95. Chithambar Ganesh A., Vinod Kumar M., Mukilan K., Suresh Kumar A., Arun Kumar K. - Investigation on the effect of ultra fine rice husk ash over slag based geopolymer concrete, Research on Engineering Structures and Materials 9 (2023) 67-81. https://doi.org/10.17515/resm2022.501ma0814
96. Tchakouté H. K., Rüscher, C.H., Kong, S., Kamseu, E., Leonelli, C.: - Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activators: A comparative study. Constr Build Mater. 114, 276–289 (2016). https://doi.org/10.1016/j.conbuildmat.2016.03.184
97. Kamseu E., Beleuk à Moungam L. M., Cannio M., Billong N., Chaysuwan D., Melo U. C., Leonelli C. - Substitution of sodium silicate with rice husk ash-NaOH solution in metakaolin based geopolymer cement concerning reduction in global warming, J. Clean Prod. 142 (2017) 3050-3060. https://doi.org/10.1016/j.jclepro.2016.10.164
98. Rashad A. M. - Alkali-activated metakaolin: A short guide for civil Engineer – An overview, Constr Build Mater. 41 (2013) 751-765. https://doi.org/10.1016/ j.conbuildmat.2012.12.030
99. Rashad A. M. - Metakaolin as cementitious material: History, scours, production and composition – A comprehensive overview, Constr Build Mater. 41 (2013) 303-318. https://doi.org/10.1016/j.conbuildmat.2012.12.001
100. Cheng H., Lin K. L., Cui R., Hwang C. L., Cheng T. W., Chang Y. M. - Effect of solid-to-liquid ratios on the properties of waste catalyst-metakaolin based geopolymers, Constr Build Mater. 88 (2015) 74-83. https://doi.org/10.1016/ j.conbuildmat.2015.01.005
101. Sakkas K., Kapelari S., Panias D., Nomikos P., Sofianos A. - Fire Resistant K-Based Metakaolin Geopolymer for Passive Fire Protection of Concrete Tunnel Linings, Open Access Library Journal 01 (2014) 1-9. https://doi.org/10.4236/oalib.1100806
102. Torres-Carrasco M., Reinosa J. J., de la Rubia M. A., Reyes E., Alonso Peralta F., Fernández J. F. - Critical aspects in the handling of reactive silica in cementitious materials: Effectiveness of rice husk ash vs nano-silica in mortar dosage, Constr Build Mater. 223 (2019) 360-367. https://doi.org/10.1016/j.conbuildmat.2019.07.023
103. Saraya M. E. S. I. - Study physico-chemical properties of blended cements containing fixed amount of silica fume, blast furnace slag, basalt and limestone, a comparative study, Constr Build Mater. 72 (2014) 104-112. https://doi.org/10.1016/ j.conbuildmat.2014.08.071
104. Sayed M., Zeedan S. R. - Green binding material using alkali activated blast furnace slag with silica fume, Housing and Building National Research Center, 2013. https://doi.org/10.1016/j.hbrcj.2012.10.003
105. Lam L., Wong Y. L., CS P. - Effect of fly ash and silica fume on compressive and fracture behaviors of concrete, Cem Concr Res. 28 (1998) 13.
106. Okoye F. N., Prakash S., Singh N. B. - Durability of fly ash based geopolymer concrete in the presence of silica fume, J. Clean Prod. 149 (2017) 1062-1067. https://doi.org/10.1016/j.jclepro.2017.02.176
107. Luukkonen T., Abdollahnejad Z., Yliniemi J., Kinnunen P., Illikainen M. - Comparison of alkali and silica sources in one-part alkali-activated blast furnace slag mortar, J. Clean Prod. 187 (2018) 171-179. https://doi.org/10.1016/j.jclepro. 2018.03.202
108. Sun S., Lin J., Zhang P., Fang L., Ma R., Quan Z., Song X. - Geopolymer synthetized from sludge residue pretreated by the wet alkalinizing method: Compressive strength and immobilization efficiency of heavy metal, Constr Build Mater. 170 (2018) 619-626. https://doi.org/10.1016/j.conbuildmat.2018.03.068
109. He J., Jie Y., Zhang J., Yu Y., Zhang G. - Synthesis and characterization of red mud and rice husk ash-based geopolymer composites, Cem. Concr Compos. 37 (2013) 108-118. https://doi.org/10.1016/j.cemconcomp.2012.11.010
110. Kumar A., Kumar S. - Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization, Constr Build Mater. 38 (2013) 865-871. https://doi.org/10.1016/j.conbuildmat.2012.09.013
111. Shoaei P., Ameri F., Reza Musaeei H., Ghasemi T., Cheah C. B. - Glass powder as a partial precursor in Portland cement and alkali-activated slag mortar: A comprehensive comparative study, Constr Build Mater. 251 (2020). https://doi.org/10.1016/ j.conbuildmat.2020.118991
112. Yan S., Sagoe-Crentsil K. - Properties of wastepaper sludge in geopolymer mortars for masonry applications, J. Environ Manage 112 (2012) 27-32. https://doi.org/10.1016/ j.jenvman.2012.07.008
113. Zhang S., Keulen A., Arbi K., Ye G. - Waste glass as partial mineral precursor in alkali-activated slag/fly ash system, Cem. Concr. Res. 102 (2017) 29-40. https://doi.org/10.1016/j.cemconres.2017.08.012
114. Liu Y., Shi C., Zhang Z., Li N. - An overview on the reuse of waste glasses in alkali-activated materials, (2019).
115. Obenaus-Emler R., Falah M., Illikainen M. - Assessment of mine tailings as precursors for alkali-activated materials for on-site applications, Constr Build. Mater. 246 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118470
116. Samadi M., Wong L. S., Murali G., Abdul Shukor Lim N. H., Abdulkadir I., Tan S. Q., Chan Y. T. - Sodium metasilicate-activated one-part geopolymer concrete: Impact strength assessment with bottom ash substitution and fiber reinforcement, Case Studies in Construction Materials 21 (2024). https://doi.org/10.1016/j.cscm.2024.e03794
117. Kou S. C., Poon C. S. - Properties of concrete prepared with crushed fine stone, furnace bottom ash and fine recycled aggregate as fine aggregates, Constr Build Mater 23 (2009) 2877-2886. https://doi.org/10.1016/j.conbuildmat.2009.02.009
118. Buyle M., Maes B., Van Passel S., Boonen K., Vercalsteren A., Audenaert A. - Ex-ante LCA of emerging carbon steel slag treatment technologies: Fast forwarding lab observations to industrial-scale production, J. Clean Prod. 313 (2021) 127921. https://doi.org/10.1016/j.jclepro.2021.127921
119. Xue Z., Zhang Y., Luo J., Yan C., Emmanuel M., Jia X. - Analysis of compressive strength, durability properties, and micromechanisms of solidified loess using industrial solid waste: Slag–white mud–calcium carbide residue, Journal of Building Engineering 84 (2024) 108511. https://doi.org/10.1016/j.jobe.2024.108511
120. Manjunath R., Narasimhan M. C., Umesh K. M., Shivam Kumar, Bala Bharathi U. K. - Studies on development of high performance, self-compacting alkali activated slag concrete mixes using industrial wastes, Constr Build Mater 198 (2019) 133-147. https://doi.org/10.1016/j.conbuildmat.2018.11.242
121. Ahmari S., Zhang L. - Production of eco-friendly bricks from copper mine tailings through geopolymerization, Constr Build Mater. 29 (2012) 323-331. https://doi.org/ 10.1016/j.conbuildmat.2011.10.048
122. Quan X., Wang S., Liu K., Xu J., Zhao N., Liu B. - Influence of molybdenum tailings by-products as fine aggregates on mechanical properties and microstructure of concrete, Journal of Building Engineering 54 (2022) 104677. https://doi.org/ 10.1016/j.jobe.2022.104677
123. Xiaolong Z., Shiyu Z., Hui L., Yingliang Z. - Disposal of mine tailings via geopolymerization, (2021)
124. Chindaprasirt P., Rattanasak U., Taebuanhuad S. - Role of microwave radiation in curing the fly ash geopolymer, Advanced Powder Technology 24 (2013) 703-707. https://doi.org/10.1016/j.apt.2012.12.005
125. Tho-In T., Sata V., Boonserm K., Chindaprasirt P. - Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash, J. Clean Prod. 172 (2016) 2892-2898. https://doi.org/10.1016/j.jclepro.2017.11.125
126. Clausi M., Fernández-Jiménez A. M., Palomo A., Tarantino S. C., Zema M. - Reuse of waste sandstone sludge via alkali activation in matrices of fly ash and metakaolin, Constr Build Mater. 172 (2018) 212-223. https://doi.org/10.1016/j.conbuildmat. 2018.03.221
127. Owaid H. M., Hamid R., Taha M. R. - Durability properties of multiple-blended binder concretes incorporating thermally activated alum sludge ash, Constr Build Mater. 200 (2019) 591-603. https://doi.org/10.1016/j.conbuildmat.2018.12.149
128. Antunes Boca Santa R. A., Bernardin A. M., Riella H. G., Kuhnen N. C. - Geopolymer synthetized from bottom coal ash and calcined paper sludge, J. Clean Prod. 57 (2013) 302-307. https://doi.org/10.1016/j.jclepro.2013.05.017
129. Valente M., Sambucci M., Chougan M., Ghaffar S. H. - Reducing the emission of climate-altering substances in cementitious materials: A comparison between alkali-activated materials and Portland cement-based composites incorporating recycled tire rubber, J. Clean Prod. 333 (2022) 130013. https://doi.org/10.1016/j.jclepro. 2021.130013
130. Wongsa A., Zaetang Y., Sata V., Chindaprasirt P. - Properties of lightweight fly ash geopolymer concrete containing bottom ash as aggregates, Constr Build Mater. 111 (2016) 637-643. https://doi.org/10.1016/j.conbuildmat.2016.02.135
131. Wongsa A., Boonserm K., Waisurasingha C., Sata V., Chindaprasirt P. - Use of municipal solid waste incinerator (MSWI) bottom ash in high calcium fly ash geopolymer matrix, J. Clean Prod. 148 (2017) 49-59. https://doi.org/10.1016/ j.jclepro.2017.01.147
132. Casanova S., Silva R. V., de Brito J., Pereira M. F. C. - Mortars with alkali-activated municipal solid waste incinerator bottom ash and fine recycled aggregates, J. Clean Prod. 289 (2021) 125707. https://doi.org/10.1016/j.jclepro.2020.125707
133. Rathee M., Singh N. - Durability properties of copper slag and coal bottom ash based I-shaped geopolymer paver blocks, Constr Build Mater. 347 (2022). https://doi.org/ 10.1016/j.conbuildmat.2022.128461
134. Ferone C., Colangelo F., Messina F., Santoro L., Cioffi R. - Recycling of pre-washed municipal solid waste incinerator fly ash in the manufacturing of low temperature setting geopolymer materials, Materials 6 (2013) 3420-3437. https://doi.org/10.3390/ ma6083420
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.