A critical review on factors affecting the two-stage anaerobic digestion of biodegradable solid waste
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/19962Keywords:
Anaerobic digestion, Inhibition, Operating parameter, Two-stage digestionAbstract
Anaerobic digestion (AD) technology has attracted considerable attention from the scientific community and has become a crucial component of sustainable solid waste management systems. It is the only biotechnological process capable of converting high-moisture biomass waste into energy through a series of biochemical steps, including hydrolysis, acidogenesis, acetate production, and methane generation. Notably, the two-stage anaerobic digestion (TAD) process, which separates methanogenesis and hydrolysis into two distinct reactors, offers significant advantages over conventional methods. The performance of AD systems is influenced by various factors, including growth conditions (such as carbon-to-nitrogen ratio, pH, and temperature), operational parameters (such as retention time and organic loading rate), feedstock pretreatment, and potential inhibitors. While these aspects have been widely studied in single-stage anaerobic digestion systems, research on their impact in TAD systems remains limited. This study aims to provide a comprehensive review of the factors affecting TAD systems. It synthesizes the latest research findings from recent years and discusses optimal operating conditions to enhance TAD performance.
Downloads
References
1. Gül T., Cozzi L., and Havlik P. - What does net-zero emissions by 2050 mean for bioenergy and land use, IEA, 2021. https://www.iea.org/articles/what-does-net-zero-emissions-by-2050-mean-for-bioenergy-and-land-use.
2. Dinh P. V., Takeshi F., Bach L. T., Toan P. P. S., and Giang H. M. - A review of anaerobic digestion systems for biodegradable waste: Configurations, operating parameters, and current trends, Environ. Eng. Res. 25 (2020) 1-17. https://doi.org/10.4491/eer.2018.334
3. Nsair A., Onen Cinar S., Alassali A., Abu Qdais H., and Kuchta K. - Operational parameters of biogas plants: A review and evaluation study, Energies 13 (2020) 3761. https://doi.org/10.3390/en13153761
4. Ajayi-Banji A., and Rahman S. - A review of process parameters influence in solid-state anaerobic digestion: Focus on performance stability thresholds, Renew. Sust. Energ. Rev. 167 (2022) 112756. https://doi.org/10.1016/j.rser.2022.112756
5. Zhang C., Su H., Baeyens J., and Tan T. - Reviewing the anaerobic digestion of food waste for biogas production, Renew. Sust. Energ. Rev. 38 (2014) 383-392. http://dx.doi.org/ 10.1016/j.rser.2014.05.038
6. Mao C., Feng Y., Wang X., and Ren G. - Review on research achievements of biogas from anaerobic digestion, Renew. Sust. Energ. Rev. 45 (2015) 540-555. https://doi.org/ 10.1016/j.rser.2015.02.032
7. Komilis D., Barrena R., Grando R. L., Vogiatzi V., Sánchez A., and Font X. - A state of the art literature review on anaerobic digestion of food waste: influential operating parameters on methane yield, Rev. Environ. Sci. Biotechnol. 16 (2017) 347-360. https://doi.org/ 10.1007/s11157-017-9428-z
8. Srisowmeya G., Chakravarthy M., and Devi G. N. - Critical considerations in two-stage anaerobic digestion of food waste - A review, Renew. Sust. Energ. Rev. 119 (2020) 109587. https://doi.org/10.1016/j.rser.2019.109587
9. Cremonez P. A., Teleken J. G., Meier T. R. W., and Alves H. J. - Two-Stage anaerobic digestion in agroindustrial waste treatment: A review, J. Environ. Manage. 281 (2021) 111854. https://doi.org/10.1016/j.jenvman.2020.111854
10. Chozhavendhan S., Karthigadevi G., Bharathiraja B., Kumar R. P., Abo L. D., Prabhu S. V., . . . Jayakumar M. - Current and prognostic overview on the strategic exploitation of anaerobic digestion and digestate: A review, Environ. Res. 216 (2023) 114526. https://doi.org/10.1016/j.envres.2022.114526
11. Xu S. Y., Karthikeyan O. P., Selvam A., and Wong J. W. - Effect of inoculum to substrate ratio on the hydrolysis and acidification of food waste in leach bed reactor, Bioresour. Technol. 126 (2012) 425-430. https://doi.org/10.1016/j.biortech.2011.12.059
12. USEPA - Biosolids Technology Fact Sheet: Multi-stage Anaerobic Digestion. National Service Center for Environmental Publications, 2006. https://www.epa.gov/sites/ production/files/2017-04/documents/multi_stage_anaerobic_digestion.pdf.
13. Dinh P. V., and Fujiwara T. - Application of an Integrated Granular and Suspended Sludge Methane Reactor for a Two-Stage Anaerobic Digestion System to Deal with Biodegradable Municipal Solid Waste, Fermentation 9 (2023) 720. https://doi.org/10.3390/ fermentation9080720
14. Li W., Guo J., Cheng H., Wang W., and Dong R. - Two-phase anaerobic digestion of municipal solid wastes enhanced by hydrothermal pretreatment: Viability, performance and microbial community evaluation, Appl. Energy 189 (2017) 613-622. https://doi.org/ 10.1016/j.apenergy.2016.12.101
15. Pavan P., Battistoni P., Cecchi F., and Mata-Alvarez J. - Two-phase anaerobic digestion of source sorted OFMSW (organic fraction of municipal solid waste): performance and kinetic study, Water Sci. Technol. 41 (2000) 111-118. http://wst.iwaponline.com/content/ 41/3/111.article-info
16. Schievano A., Tenca A., Scaglia B., Merlino G., Rizzi A., Daffonchio D., et al.. - Two-stage vs single-stage thermophilic anaerobic digestion: comparison of energy production and biodegradation efficiencies, Environ. Sci. Technol. 46 (2012) 8502-8510. https://doi.org/10.1021/es301376n
17. Paudel S., Kang Y., Yoo Y. S., and Seo G. T. - Effect of volumetric organic loading rate (OLR) on H2 and CH4 production by two-stage anaerobic co-digestion of food waste and brown water, Waste Manage, Oxford, 2016, pp. 484-493. http://dx.doi.org/10.1016/ j.wasman.2016.12.013
18. Chu C. F., Li Y. Y., Xu K. Q., Ebie Y., Inamori Y., and Kong H. N. - A pH- and temperature-phased two-stage process for hydrogen and methane production from food waste, Int. J. Hydrogen Energy 33 (2008) 4739-4746. http://dx.doi.org/10.1016/j.ijhydene. 2008.06.060
19. Wu L. J., Kobayashi T., Li Y. Y., and Xu K. Q. - Comparison of single-stage and temperature-phased two-stage anaerobic digestion of oily food waste, Energy Convers. Manage. 106 (2015) 1174-1182. http://dx.doi.org/10.1016/j.enconman.2015.10.059
20. Zhang B., Zhang L., Zhang S., Shi H., and Cai W. - The influence of pH on hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion, Environ. Technol. 26 (2005) 329-340. https://doi.org/10.1080/09593332608618563
21. Fuess L. T., Eng F., Bovio-Winkler P., Etchebehere C., Zaiat M., and Nascimento C. A. O. D. - Methanogenic consortia from thermophilic molasses-fed structured-bed reactors: microbial characterization and responses to varying food-to-microorganism ratios, Brazilian J. Chem. Eng. (2022) 1-21. https://doi.org/10.1007/s43153-022-00291-x
22. Lakeh A. B., Azizi A., Koupaie E. H., Bekmuradov V., Hafez H., and Elbeshbishy E. - A comprehensive study for characteristics, acidogenic fermentation, and anaerobic digestion of source separated organics, J. Clean. Prod. 228 (2019) 73-85. https://doi.org/10.1016/ j.jclepro.2019.04.223
23. Silva F., Serafim L., Nadais H., Arroja L., and Capela I. - Acidogenic fermentation towards valorisation of organic waste streams into volatile fatty acids, Chem. Biochem. Eng. Q. 27 (2013) 467-476.
24. Sreela-Or C., Imai T., Plangklang P., and Reungsang A. - Optimization of key factors affecting hydrogen production from food waste by anaerobic mixed cultures, Int. J. Hydrogen Energy. 36 (2011) 14120-14133. https://doi.org/10.1016/j.ijhydene.2011.04.136
25. Nasr M., Tawfik A., Ookawara S., and Suzuki M. - Biological hydrogen production from starch wastewater using a novel up-flow anaerobic staged reactor, BioResources 8 (2013) 4951-4968. http://doi.org/10.15376/biores.8.4.4951-4968
26. Shin H.-S., Han S., Song Y., and Lee C. - Performance of UASB reactor treating leachate from acidogenic fermenter in the two-phase anaerobic digestion of food waste, Water Res. 35 (2001) 3441-3447. https://doi.org/10.1016/S0043-1354(01)00041-0
27. Ong S., Hu J., Ng W., and Lu Z. - Granulation enhancement in anaerobic sequencing batch reactor operation, J. Environ. Eng. 128 (2002) 387-390. https://doi.org/10.1061/(ASCE) 0733-9372(2002)128:4(387)
28. Blanco V. M. C., Fuess L. T., and Zaiat M. - Calcium dosing for the simultaneous control of biomass retention and the enhancement of fermentative biohydrogen production in an innovative fixed-film bioreactor, Int. J. Hydrogen Energy. 42 (2017) 12181-12196. https://doi.org/10.1016/j.ijhydene.2017.02.180
29. Fuess L. T., Fuentes L., Bovio-Winkler P., Eng F., Etchebehere C., Zaiat M., and do Nascimento C. A. O. - Full details on continuous biohydrogen production from sugarcane molasses are unraveled: Performance optimization, self-regulation, metabolic correlations and quanti-qualitative biomass characterization, Chem. Eng. J. 414 (2021) 128934. https://doi.org/10.1016/j.cej.2021.128934
30. del Pilar Anzola-Rojas M., da Fonseca S. G., da Silva C. C., de Oliveira V. M., and Zaiat M. - The use of the carbon/nitrogen ratio and specific organic loading rate as tools for improving biohydrogen production in fixed-bed reactors, Biotechnology Reports 5 (2015) 46-54. https://doi.org/10.1016/j.btre.2014.10.010
31. Cassidy D., Hirl P., and Belia E. - Methane production from the soluble fraction of distillers' dried grains with solubles in anaerobic sequencing batch reactors, Water Environ. Res. 80 (2008) 570-575. https://doi.org/10.2175/106143007X221517
32. Ostrem K. - Greening waste: Anaerobic digestion for treating the organic fraction of municipal solid wastes, Columbia University, 2004.
33. Ariunbaatar J., Panico A., Esposito G., Pirozzi F., and Lens P. N. - Pretreatment methods to enhance anaerobic digestion of organic solid waste, Appl. Energy 123 (2014) 143-156. https://doi.org/10.1016/j.apenergy.2014.02.035
34. Izumi K., Okishio Y.-k., Nagao N., Niwa C., Yamamoto S., and Toda T. - Effects of particle size on anaerobic digestion of food waste, 2010. https://doi.org/10.1016/ j.ibiod.2010.06.013
35. Krishna D., and Kalamdhad A. S. - Pre-treatment and anaerobic digestion of food waste for high rate methane production–A review, J. Environ. Chem. Eng. 2 (2014) 1821-1830. https://doi.org/10.1016/j.jece.2014.07.024
36. Chiu S. L., and Lo I. M. - Reviewing the anaerobic digestion and co-digestion process of food waste from the perspectives on biogas production performance and environmental impacts, Environ. Sci. Pollut. Res. 23 (2016) 24435-24450. http://dx.doi.org/10.1007/ s11356-016-7159-2
37. Appels L., Baeyens J., Degrève J., and Dewil R. - Principles and potential of the anaerobic digestion of waste-activated sludge, Prog. Energy Combust. Sci. 34 (2008) 755-781. https://doi.org/10.1016/j.pecs.2008.06.002
38. Kim J., Park C., Kim T. H., Lee M., Kim S., Kim S.-W., and Lee J. - Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge, J. Biosci. Bioeng. 95 (2003) 271-275. http://dx.doi.org/10.1016/S1389-1723(03)80028-2
39. Lim J. W., and Wang J. Y. - Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste, Waste Manage. 33 (2013) 813-819. https://doi.org/10.1016/j.wasman.2012.11.013
40. Miah M. S., Tada C., and Sawayama S. - Enhancement of biogas production from sewage sludge with the addition of Geobacillus sp. strain AT1 culture, Japanese Journal of Water Treatment Biology 40 (2004) 97-104. https://doi.org/10.2521/jswtb.40.97
41. Agyeman F. O., and Tao W. - Anaerobic co-digestion of food waste and dairy manure: Effects of food waste particle size and organic loading rate, J. Environ. Manage 133 (2014) 268-274. https://doi.org/10.1016/j.jenvman.2013.12.016
42. Kim I., Kim D., and Hyun S. - Effect of particle size and sodium ion concentration on anaerobic thermophilic food waste digestion, Water Sci. Technol. 41 (2000) 67-73. https://doi.org/10.2166/wst.2000.0057
43. Zhang Z. L., Zhang L., Zhou Y. L., Chen J. C., Liang Y. M., and Wei L. - Pilot-scale operation of enhanced anaerobic digestion of nutrient-deficient municipal sludge by ultrasonic pretreatment and co-digestion of kitchen garbage, J. Environ. Chem. Eng. 1 (2013a) 73-78. http://dx.doi.org/10.1016/j.jece.2013.03.008
44. Appels L., Houtmeyers S., Degrève J., Van Impe J., and Dewil R. - Influence of microwave pre-treatment on sludge solubilization and pilot scale semi-continuous anaerobic digestion, Bioresour. Technol. 128 (2013) 598-603. http://dx.doi.org/10.1016/j.biortech.2012.11.007
45. Li Y., and Jin Y. - Effects of thermal pretreatment on acidification phase during two-phase batch anaerobic digestion of kitchen waste, Renewable Energy 77 (2015) 550-557. https://doi.org/10.1016/j.renene.2014.12.056
46. Ma J., Duong T. H., Smits M., Verstraete W., and Carballa M. - Enhanced biomethanation of kitchen waste by different pre-treatments. Bioresour. Technol., 102 (2011) 592-599. http://dx.doi.org/10.1016/j.biortech.2010.07.122
47. Wang D., Ai P., Yu L., Tan Z., and Zhang Y. - Comparing the hydrolysis and biogas production performance of alkali and acid pretreatments of rice straw using two-stage anaerobic fermentation, Biosyst. Eng. 132 (2015) 47-55. https://doi.org/10.1016/ j.biosystemseng.2015.02.007
48. Güelfo L. F., Álvarez-Gallego C., Márquez D. S., and García L. R. - The effect of different pretreatments on biomethanation kinetics of industrial Organic Fraction of Municipal Solid Wastes (OFMSW), Chem. Eng. J. 171 (2011) 411-417. https://doi.org/10.1016/ j.cej.2011.03.095
49. Vavouraki A. I., Angelis E. M., and Kornaros M. - Optimization of thermo-chemical hydrolysis of kitchen wastes, Waste Manage. 33 (2013) 740-745. http://dx.doi.org/10.1016/ j.wasman.2012.07.012
50. Peng L., Bao M., Wang Q., Wang F., and Su H. - The anaerobic digestion of biologically and physicochemically pretreated oily wastewater, Bioresour. Technol. 151 (2014) 236-243. http://dx.doi.org/10.1016/j.biortech.2013.10.056
51. Rosgaard L., Andric P., Dam-Johansen K., Pedersen S., and Meyer A. S. - Effects of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw, Appl. Biochem. Biotechnol. 143 (2007) 27-40. https://doi.org/10.1007/s12010-007-0028-1
52. Kristensen J. B., Felby C., and Jørgensen H. - Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose, Biotechnol. Biofuels 2 (2009) 1-10. https://doi.org/ 10.1186/1754-6834-2-11
53. El-Mashad H. M., Zeeman G., van Loon W. K. P., Bot G. P. A., and Lettinga G. - Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure, Bioresour. Technol. 95 (2004) 191-201. http://dx.doi.org/10.1016/ j.biortech.2003.07.013
54. Mata-Alvarez J. - Biomethanization of the organic fraction of municipal solid wastes. Fundamentals of the anaerobic digestion process, IWA publishing, London, UK, 2003.
55. Robinson P. K. - Enzymes: principles and biotechnological applications, Essays Biochem. 59 (2015) 1. https://doi.org/10.1042/bse0590001
56. Nie E., He P., Zhang H., Hao L., Shao L., and Lü F. - How does temperature regulate anaerobic digestion? Renew, Sust. Energ. Rev. 150 (2021) 111453. https://doi.org/10.1016/ j.rser.2021.111453
57. Kozuchowska J., and Evison L. M. - VFA production in pre-acidification systems without pH control, Environ. Technol. 16 (1995) 667-675. https://doi.org/10.1080/ 09593331608616306
58. Sánchez E., Borja R., Weiland P., Travieso L., and Martı́n A. - Effect of substrate concentration and temperature on the anaerobic digestion of piggery waste in a tropical climate, Process Biochem. 37 (2001) 483-489. http://dx.doi.org/10.1016/S0032-9592(01)00240-0
59. Zhuo G., Yan Y., Tan X., Dai X., and Zhou Q. - Ultrasonic-pretreated waste activated sludge hydrolysis and volatile fatty acid accumulation under alkaline conditions: effect of temperature, J. Biotech. 159 (2012) 27-31.
60. El-Mashad H. M., van Loon W. K. P., and Zeeman G. - A Model of Solar Energy Utilisation in the Anaerobic Digestion of Cattle Manure, Biosyst. Eng. 84 (2003) 231-238. http://dx.doi.org/10.1016/S1537-5110(02)00245-3
61. Kim J. K., Oh B. R., Chun Y. N., and Kim S. W. - Effects of temperature and hydraulic retention time on anaerobic digestion of food waste, J. Biosci. Bioeng. 102 (2006) 328-332. http://dx.doi.org/10.1263/jbb.102.328
62. Kim M., Ahn Y.-H., and Speece R. E. - Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic, Water Res. 36 (2002) 4369-4385. http://dx.doi.org/10.1016/S0043-1354(02)00147-1
63. Gallert C., Bauer S., and Winter J. - Effect of ammonia on the anaerobic degradation of protein by a mesophilic and thermophilic biowaste population, Appl. Microbiol. Biotechnol. 50 (1998) 495-501. https://doi.org/10.1007/s002530051326
64. Gerardi M. H. - The microbiology of anaerobic digesters. Wiley-Interscience, New Jersey, USA, 2003.
65. Zaher U., Cheong D. Y., Wu B., and Chen S. - Producing energy and fertilizer from organic municipal solid waste. Department of Biological Systems Engineering, Washington State University, 2007.
66. Zhang P., Chen Y., and Zhou Q. - Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: effect of pH, Water Res. 43 (2009) 3735-3742. https://doi.org/10.1016/j.watres.2009.05.036
67. Jiang J., Zhang Y., Li K., Wang Q., Gong C., and Li M. - Volatile fatty acids production from food waste: Effects of pH, temperature, and organic loading rate, Bioresour. Technol. 143 (2013) 525-530. http://dx.doi.org/10.1016/j.biortech.2013.06.025
68. Lindner J., Zielonka S., Oechsner H., and Lemmer A. - Effect of different pH-values on process parameters in two-phase anaerobic digestion of high-solid substrates, Environ. Technol. 36 (2015) 198-207. https://doi.org/10.1080/09593330.2014.941944
69. Moestedt J., Nordell E., Hallin S., and Schnürer A. - Two-stage anaerobic digestion for reduced hydrogen sulphide production, J. Chem. Technol. Biotechnol. 91 (2016) 1055-1062. https://doi.org/10.1002/jctb.4682
70. Yu H., Q, and Fang H. H. P. - Acidogenesis of dairy wastewater at various pH levels, Water Sci. Technol. 45 (2002) 201-206.
71. Nayono S. E. - Anaerobic digestion of organic solid waste for energy production, Karlsruhe Institute of Technology, 2010.
72. Buyukkamaci N., and Filibeli A. - Volatile fatty acid formation in an anaerobic hybrid reactor, Process Biochem. 39 (2004) 1491-1494. http://dx.doi.org/10.1016/S0032-9592(03)00295-4
73. Cysneiros D., Banks C. J., Heaven S., and Karatzas K. A. G. - The effect of pH control and ‘hydraulic flush’ on hydrolysis and Volatile Fatty Acids (VFA) production and profile in anaerobic leach bed reactors digesting a high solids content substrate, Bioresour. Technol. 123 (2012) 263-271. http://dx.doi.org/10.1016/j.biortech.2012.06.060
74. Pham T. N., Nam W. J., Jeon Y. J., and Yoon H. H. - Volatile fatty acids production from marine macroalgae by anaerobic fermentation, Bioresour. Technol. 124 (2012) 500-503. http://dx.doi.org/10.1016/j.biortech.2012.08.081
75. Fang H. H., and Liu H. - Effect of pH on hydrogen production from glucose by a mixed culture, Bioresour. Technol. 82 (2002) 87-93. https://doi.org/10.1016/j.biortech. 2003.07.013
76. Horiuchi J. I., Shimizu T., Kanno T., and Kobayashi M. - Dynamic behavior in response to pH shift during anaerobic acidogenesis with a chemostat culture, Biotechnol. Tech. 13 (1999) 155-157. https://doi.org/10.1023/A:1008947712198
77. Hartmann H., and Ahring B. K. - Strategies for the anaerobic digestion of the organic fraction of municipal solid waste: an overview, Water Sci. Technol. 53 (2006) 7-22. https://doi.org/10.2166/wst.2006.231
78. Dareioti M. A., and Kornaros M. - Effect of hydraulic retention time (HRT) on the anaerobic co-digestion of agro-industrial wastes in a two-stage CSTR system, Bioresour. Technol. 167 (2014) 407-415. https://doi.org/10.1016/j.biortech.2014.06.045
79. Turovskiy I. S., and Mathai P. - Wastewater sludge processing. Wiley-Interscience, New Jersey, USA, 2006.
80. Nagao N., Tajima N., Kawai M., Niwa C., Kurosawa N., Matsuyama T., et al. - Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste, Bioresour. Technol. 118 (2012) 210-218. http://dx.doi.org/10.1016/j.biortech.2012.05.045
81. Rincón B., Borja R., González J. M., Portillo M. C., and Sáiz-Jiménez C. - Influence of organic loading rate and hydraulic retention time on the performance, stability and microbial communities of one-stage anaerobic digestion of two-phase olive mill solid residue, Biochem. Eng. J. 40 (2008) 253-261. http://dx.doi.org/10.1016/j.bej.2007.12.019
82. Puyuelo B., Ponsá S., Gea T., and Sánchez A. - Determining C/N ratios for typical organic wastes using biodegradable fractions, Chemosphere 85 (2011) 653-659. http://dx.doi.org/ 10.1016/j.chemosphere.2011.07.014
83. Li Y., Park S. Y., and Zhu J. - Solid-state anaerobic digestion for methane production from organic waste, Renew. Sust. Energ. Rev. 15 (2011) 821-826. http://dx.doi.org/ 10.1016/j.rser.2010.07.042
84. Zhang C., Xiao G., Peng L., Su H., and Tan T. - The anaerobic co-digestion of food waste and cattle manure, Bioresour. Technol. 129 (2013c) 170-176. http://dx.doi.org/ 10.1016/j.biortech.2012.10.138
85. Dai X., Li X., Zhang D., Chen Y., and Dai L. - Simultaneous enhancement of methane production and methane content in biogas from waste activated sludge and perennial ryegrass anaerobic co-digestion: The effects of pH and C/N ratio, Bioresour. Technol. 216 (2016) 323-330. http://dx.doi.org/10.1016/j.biortech.2016.05.100
86. Kumar M., Ou Y. L., and Lin J. G. - Co-composting of green waste and food waste at low C/N ratio, Waste Manage. 30 (2010) 602-609. http://dx.doi.org/10.1016/ j.wasman.2009.11.023
87. Zhong W., Chi L., Luo Y., Zhang Z., Zhang Z., and Wu W. M. - Enhanced methane production from Taihu Lake blue algae by anaerobic co-digestion with corn straw in continuous feed digesters, Bioresour. Technol. 134 (2013b) 264-270. http://dx.doi.org/ 10.1016/j.biortech.2013.02.060
88. Wu X., Yao W., Zhu J., and Miller C. - Biogas and CH4 productivity by co-digesting swine manure with three crop residues as an external carbon source, Bioresour. Technol. 101 (2010) 4042-4047. http://dx.doi.org/10.1016/j.biortech.2010.01.052
89. Wang X., Yang G., Feng Y., Ren G., and Han X. - Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw, Bioresour. Technol. 120 (2012) 78-83. http://dx.doi.org/10.1016/j.biortech.2012.06.058
90. Yan Z., Song Z., Li D., Yuan Y., Liu X., and Zheng T. - The effects of initial substrate concentration, C/N ratio, and temperature on solid-state anaerobic digestion from composting rice straw, Bioresour. Technol. 177 (2015) 266-273. http://dx.doi.org/ 10.1016/j.biortech.2014.11.089
91. Asquer C., Pistis A., and Scano E. A. - Characterization of fruit and vegetable waste as a single substrate for the anaerobic digestion, Environ. Eng. Manag. J. 12 (2013) 89-92. http://omicron.ch.tuiasi.ro/EEMJ/pdfs/vol12/no11suppl/24_Asquer_13.pdf
92. Zhang L., Lee Y. W., and Jahng D. - Anaerobic co-digestion of food waste and piggery wastewater: focusing on the role of trace elements, Bioresour. Technol. 102 (2011) 5048-5059. https://doi.org/10.1016/j.biortech.2011.01.082
93. Zhang R., El-Mashad H. M., Hartman K., Wang F., Liu G., Choate C., and Gamble P. - Characterization of food waste as feedstock for anaerobic digestion, Bioresour. Technol. 98 (2007) 929-935. https://doi.org/10.1016/j.biortech.2006.02.039
94. Han S. K., and Shin H. S. - Biohydrogen production by anaerobic fermentation of food waste, Int. J. Hydrogen Energy. 29 (2004) 569-577. http://dx.doi.org/10.1016/ j.ijhydene.2003.09.001
95. Wang M., Zhang X., Zhou J., Yuan Y., Dai Y., Li D., et al. - The dynamic changes and interactional networks of prokaryotic community between co-digestion and mono-digestions of corn stalk and pig manure, Bioresour. Technol. 225 (2017) 23-33. http://dx.doi.org/10.1016/j.biortech.2016.11.008
96. Alqaralleh R. M., Kennedy K., Delatolla R., and Sartaj M. - Thermophilic and hyper-thermophilic co-digestion of waste activated sludge and fat, oil and grease: Evaluating and modeling methane production, J. Environ. Manage. 183 (Part 3) (2016) 551-561. http://dx.doi.org/10.1016/j.jenvman.2016.09.003
97. Riggio V., Comino E., and Rosso M. - Energy production from anaerobic co-digestion processing of cow slurry, olive pomace and apple pulp, Renewable Energy 83 (2015) 1043-1049. http://dx.doi.org/10.1016/j.renene.2015.05.056
98. Olsson J., Feng X. M., Ascue J., Gentili F. G., Shabiimam M. A., Nehrenheim E., and Thorin E. - Co-digestion of cultivated microalgae and sewage sludge from municipal waste water treatment, Bioresour. Technol. 171 (2014) 203-210. http://dx.doi.org/ 10.1016/j.biortech.2014.08.069
99. Kalamaras S. D., and Kotsopoulos T. A. - Anaerobic co-digestion of cattle manure and alternative crops for the substitution of maize in South Europe. Bioresour. Technol., 172 (2014) 68-75. http://dx.doi.org/10.1016/j.biortech.2014.09.005
100. Rajagopal R., Lim J. W., Mao Y., Chen C. L., and Wang J. Y. - Anaerobic co-digestion of source segregated brown water (feces-without-urine) and food waste: For Singapore context, Sci. Total Environ. 443 (2013) 877-886. http://dx.doi.org/10.1016/ j.scitotenv.2012.11.016
101. Brown D., and Li Y. - Solid state anaerobic co-digestion of yard waste and food waste for biogas production, Bioresour. Technol. 127 (2013) 275-280. http://dx.doi.org/10.1016/ j.biortech.2012.09.081
102. Marañón E., Castrillón L., Quiroga G., Fernández-Nava Y., Gómez L., and García M. M. - Co-digestion of cattle manure with food waste and sludge to increase biogas production, Waste Manage. 32 (2012) 1821-1825. http://dx.doi.org/10.1016/j.wasman.2012.05.033
103. Wang L.-H., Wang Q., Cai W., and Sun X. - Influence of mixing proportion on the solid-state anaerobic co-digestion of distiller's grains and food waste, Biosyst. Eng. 112 (2012) 130-137. http://dx.doi.org/10.1016/j.biosystemseng.2012.03.006
104. Yenigün O., and Demirel B. - Ammonia inhibition in anaerobic digestion: A review, Process Biochem. 48 (2013) 901-911. http://dx.doi.org/10.1016/j.procbio.2013.04.012
105. Hansen K. H., Angelidaki I., and Ahring B. K. - Anaerobic digestion of swine manure: inhibition by ammonia, Water Res. 32 (1998) 5-12. https://doi.org/10.1016/S0043-1354(97)00201-7
106. Fernandes T. V., Keesman K. J., Zeeman G., and van Lier J. B. - Effect of ammonia on the anaerobic hydrolysis of cellulose and tributyrin, Biomass Bioenergy 47 (2012) 316-323. http://dx.doi.org/10.1016/j.biombioe.2012.09.029
107. Chen Y., Cheng J. J., and Creamer K. S. - Inhibition of anaerobic digestion process: A review, Bioresour. Technol. 99 (2008) 4044-4064. http://dx.doi.org/10.1016/ j.biortech.2007.01.057
108. Kayhanian M. - Ammonia inhibition in high-solids biogasification: an overview and practical solutions, Environ. Technol. 20 (1999) 355-365. https://doi.org/10.1080/ 09593332008616828
109. Duan N., Dong B., Wu B., and Dai X. - High-solid anaerobic digestion of sewage sludge under mesophilic conditions: Feasibility study, Bioresour. Technol. 104 (2012) 150-156. http://dx.doi.org/10.1016/j.biortech.2011.10.090
110. El Hadj T. B., Astals S., Gali A., Mace S., and Mata-Alvarez J. - Ammonia influence in anaerobic digestion of OFMSW. Water Sci. Technol., 59 (2009) 1153-1158. https://doi.org/10.2166/wst.2009.100
111. Nakakubo R., Møller H. B., Nielsen A. M., and Matsuda J. - Ammonia inhibition of methanogenesis and identification of process indicators during anaerobic digestion, Environ. Eng. Sci. 25 (2008) 1487-1496. https://doi.org/10.1089/ees.2007.0282
112. Sung S., and Liu T. - Ammonia inhibition on thermophilic anaerobic digestion, Chemosphere 53 (2003) 43-52. https://doi.org/10.1016/S0045-6535(03)00434-X
113. Angenent L. T., Sung S., and Raskin L. - Methanogenic population dynamics during startup of a full-scale anaerobic sequencing batch reactor treating swine waste, Water Res. 36 (2002) 4648-4654. https://doi.org/10.1016/S0043-1354(02)00199-9
114. Gallert C., and Winter J. - Mesophilic and thermophilic anaerobic digestion of source-sorted organic wastes: effect of ammonia on glucose degradation and methane production. Appl. Microbiol. Biotechnol., 48 (1997) 405-410. https://doi.org/10.1007/s002530051071
115. Peu P., Picard S., Diara A., Girault R., Béline F., Bridoux G., and Dabert P. - Prediction of hydrogen sulphide production during anaerobic digestion of organic substrates, Bioresour. Technol. 121 (2012) 419-424. http://dx.doi.org/10.1016/j.biortech.2012.06.112
116. Li C., and Fang H. H. - Inhibition of heavy metals on fermentative hydrogen production by granular sludge, Chemosphere 67 (2007) 668-673. https://doi.org/10.1016/j.chemosphere. 2006.11.005
117. Romero-Güiza M., Vila J., Mata-Alvarez J., Chimenos J., and Astals S. - The role of additives on anaerobic digestion: a review, Renew. Sust. Energ. Rev. 58 (2016) 1486-1499. https://doi.org/10.1016/j.rser.2015.12.094
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.