Design and Implementation of a Non-Invasive Brain Computer Interface for Prosthetic ARM

Author affiliations

Authors

DOI:

https://doi.org/10.15625/2525-2518/19839

Keywords:

prosthetic arm, brain machine interface, rehabilitation, neuroprosthetic, assistive technology

Abstract

In the field of healthcare and assistive technology, brain-controlled prosthetic arms have emerged as a transformative innovation, instilling optimism among individuals with limb disabilities. This research unveils the successful development of a non-invasive brain-controlled prosthetic arm system, integrating the Emotiv EPOC X 14-channel brain sensor with 3D printing technology. This system effectively translates neural signals into precise movements, granting users a heightened level of control and functionality.The comprehensive methodology delineates the entire process, from the strategic placement of the brain sensor to data acquisition, processing, and servo control. Calibration and user training further refine system accuracy and responsiveness.Results affirm exceptional performance, boasting a remarkable 98.73% accuracy rate. Response times exhibit variations, contingent upon command intricacy and processing overhead. User feedback extols the system’s user-friendliness and its potential to bring about transformative change in daily life.The ensuing discussion delves into pivotal aspects of user comfort, long-term usability, and streamlined setup, all crucial elements of the user experience.This research serves as a prime example of interdisciplinary collaboration, unifying neuroscience, engineering, and ethical considerations, resulting in a pioneering assistive technology. The brain-controlled prosthetic arm not only signifies technological advancement but also embodies inclusivity and ethical responsibility.In conclusion, this research illuminates the profound potential of brain-controlled prosthetic arms, empowering individuals with limb disabilities, restoring autonomy, and bridging the gap between ability and disability. As technology advances, the horizon expands, ushering in a future where limitations fade, and aspirations are realized.

Downloads

Download data is not yet available.

References

1. Pawar B. and Mungla M. - A systematic review on available technologies and selection for prosthetic arm restoration, Technol. Disabil. 34 (2) (2022) 85-99. https://doi.org/ 10.3233/TAD-210353.

2. Janvi Dev. - Transforming mobility: surveying the evolution and robotic innovations of intelligent wheelchairs, Ethiop. Int. J. Multidiscip. Res. 10 (09) (2023) 81-83.

3. Bates T. J., Fergason J. R. and Pierrie S. N. - Technological advances in prosthesis design and rehabilitation following upper extremity limb loss, Curr. Rev. Musculoskelet. Med. 13 (4) (2020) 485-493. https://doi.org/10.1007/s12178-020-09656-6.

4. Glannon W. - Ethical and social aspects of neural prosthetics, Prog. Biomed. Eng. 4 (1) (2022) 012004. https://doi.org/10.1088/2516-1091/ac23e6.

5. Borton D., Micera S., Millán J. del R. and Courtine G. - Personalized neuroprosthetics, Sci. Transl. Med. 5 (210) (2013) 210rv2. https://doi.org/10.1126/scitranslmed.3005968.

6. McIlvain D., Singh M., Khandelwal N., Meholic A., Laheri S., Sharma A. and Johnson B. N. - Low-cost sensor-integrated 3D-printed personalized prosthetic hands for children with amniotic band syndrome: a case study in sensing pressure distribution on an anatomical human–machine interface (AHMI) using 3D-printed conformal electrode arrays, PLoS One 14 (3) (2019) e0214120. https://doi.org/10.1371/journal.pone.0214120.

7. World Health Organization. Disability: Key facts; 2023. Accessed on March 7, 2023. Available from:https://www.who.int/news-room/fact-sheets/detail/disability-and-health.

8. Jacocks C. W. and Bell R. G. - Workforce members with disabilities: an underutilized talent pool for mutual growth, in: The Palgrave Handbook of Fulfillment, Wellness, and Personal Growth at Work, Springer, 2023, pp. 543-563.

9. Wolpaw J. R., Birbaumer N., McFarland D. J., Pfurtscheller G. and Vaughan T. M. - Brain–computer interfaces for communication and control, Clin. Neurophysiol. 113 (6) (2002) 767-791. https://doi.org/10.1016/S1388-2457(02)00057-3.

10. Zarghami T., Mir H. S. and Al-Nashash H. - Transfer-function-based calibration of sparse EEG systems for brain source localization, IEEE Sens. J. 15 (3) (2015) 1504-1514. https://doi.org/10.1109/JSEN.2014.2363871.

11. Al-Quraishi M. S., Elamvazuthi I., Daud S. A., Parasuraman S. and Borboni A. - EEG-based control for upper and lower limb exoskeletons and prostheses: a systematic review, Sensors 18 (10) (2018) 3342. https://doi.org/10.3390/s18103342.

12. Jayarathne I. and Cohen M. - Person identification from EEG using various machine learning techniques with inter-hemispheric amplitude ratio, PLoS One 15 (9) (2020) e0238872. https://doi.org/10.1371/journal.pone.0238872.

13. Baranowski J. and Piatek P. - Fractional band-pass filters: design, implementation and application to EEG signal processing, J. Circuits Syst. Comput. 26 (11) (2017) 1750170. https://doi.org/10.1142/S0218126617501705.

14. Srinivasan N. - Cognitive neuroscience of creativity: EEG-based approaches, Methods 42 (1) (2007) 109-116. https://doi.org/10.1016/j.ymeth.2006.12.008.

15. Yu J.-H. and Sim K.-B. - Classification of color imagination using Emotiv EPOC and event-related potential in electroencephalogram, Optik 127 (20) (2016) 9711-9718. https://doi.org/10.1016/j.ijleo.2016.07.074.

16. Madoš B., Ádám N., Hurtuk J. and Čopjak M. - Brain–computer interface and Arduino microcontroller family software interconnection solution, Proceedings of the 14th IEEE International Symposium on Applied Machine Intelligence and Informatics (SAMI), Herl'any, Slovakia, 2016, pp. 217-221. https://doi.org/10.1109/SAMI.2016.7423010.

17. Ekandem J. I., Davis T. A., Alvarez I., James M. T. and Gilbert J. E. - Evaluating the ergonomics of BCI devices for research and experimentation, Ergonomics 55 (5) (2012) 592-598. https://doi.org/10.1080/00140139.2012.662527.

18. Fakhruzzaman M. N., Riksakomara E. and Suryotrisongko H. - EEG wave identification in human brain with Emotiv EPOC for motor imagery, Procedia Comput. Sci. 72 (2015) 269-276. https://doi.org/10.1016/j.procs.2015.12.140.

19. Müller-Putz G. R., Tunkowitsch U., Minas R. K., Dennis A. R. and Riedl R. - On electrode layout in EEG studies: a limitation of consumer-grade EEG instruments, in: Davis F. D., Riedl R., vom Brocke J., Léger P.-M., Randolph A. B. and Müller-Putz G. (Eds.), Information Systems and Neuroscience, Springer, Cham, 2021, pp. 90-95. https://doi.org/10.1007/978-3-030-88900-5_10.

20. Saichoo T., Boonbrahm P. and Punsawad Y. - Investigating user proficiency of motor imagery for EEG-based BCI system to control simulated wheelchair, Sensors 22 (24) (2022) 9788. https://doi.org/10.3390/s22249788.

21. Shih J. J., Krusienski D. J. and Wolpaw J. R. - Brain–computer interfaces in medicine, Mayo Clin. Proc. 87 (3) (2012) 268-279. https://doi.org/10.1016/j.mayocp.2011.12.008.

22. Ali H. A., Popescu D., Hadar A., Vasilateanu A., Popa R. C., Goga N. and Hussam H. A. D. Q. - EEG-based brain computer interface prosthetic hand using Raspberry Pi 4, Int. J. Adv. Comput. Sci. Appl. 12 (9) (2021). https://doi.org/10.14569/IJACSA.2021.0120905.

23. Mak J. N. and Wolpaw J. R. - Clinical applications of brain–computer interfaces: current state and future prospects, IEEE Rev. Biomed. Eng. 2 (2009) 187-199. https://doi.org/10.1109/RBME.2009.2035356.

24. Lega B. C., Serruya M. D. and Zaghloul K. - Brain–machine interfaces: electrophysiological challenges and limitations, Crit. Rev. Biomed. Eng. 39 (1) (2011) 5-28. https://doi.org/10.1615/critrevbiomedeng.v39.i1.20.

25. Baniqued P. D. E., Stanyer E. C., Awais M., Kouara M., Al-Timemy A. H., Troiano R., Andreu-Perez J., Katsigiannis S., Ramzan F. and Filippetti M. L. - Brain–computer interface robotics for hand rehabilitation after stroke: a systematic review, J. NeuroEng. Rehabil. 18 (2021) 15. https://doi.org/10.1186/s12984-021-00820-8.

26. Abiri R., Borhani S., Sellers E. W., Jiang Y. and Zhao X. - A comprehensive review of EEG-based brain–computer interface paradigms, J. Neural Eng. 16 (1) (2019) 011001. https://doi.org/10.1088/1741-2552/aaf12e.

27. Jaiswal A., Nenonen J. and Parkkonen L. - On electromagnetic head digitization in MEG and EEG, Sci. Rep. 13 (1) (2023) 3801. https://doi.org/10.1038/s41598-023-30223-9.

28. Zhu M., Liu W. and Wargocki P. - Changes in EEG signals during the cognitive activity at varying air temperature and relative humidity, J. Expo. Sci. Environ. Epidemiol. 30 (2020) 285-298. https://doi.org/10.1038/s41370-019-0154-1.

29. Aggarwal G., Dai X., Saatchi R., Olayiwola J. and Demosthenous A. - Experimental demonstration of single-channel EEG signal using 32 × 32 pixel OLED screen and camera, Electronics 8 (7) (2019) 734. https://doi.org/10.3390/electronics8070734.

30. Choi W.-S. and Yeom H.-G. - Studies to overcome brain–computer interface challenges, Appl. Sci. 12 (5) (2022) 2598. https://doi.org/10.3390/app12052598.

31. Millán J. del R., Rupp R., Müller-Putz G., Murray-Smith R., Giugliemma C., Tangermann M., Vidaurre C., Cincotti F., Kübler A., Leeb R., Neuper C., Müller K.-R. and Mattia D. - Combining brain–computer interfaces and assistive technologies: state-of-the-art and challenges, Front. Neurosci. 4 (2010) 161. https://doi.org/10.3389/fnins.2010.00161.

32. Graimann B., Allison B. and Pfurtscheller G. - Brain–computer interfaces: a gentle introduction, in: Brain–Computer Interfaces: Revolutionizing Human–Computer Interaction, Springer, 2010, pp. 1-27.

33. Hochberg L. R., Serruya M. D., Friehs G. M., Mukand J. A., Saleh M., Caplan A. H., Branner A., Chen D., Penn R. D. and Donoghue J. P. - Neuronal ensemble control of prosthetic devices by a human with tetraplegia, Nature 442 (7099) (2006) 164-171. https://doi.org/10.1038/nature04970.

34. Collinger J. L., Wodlinger B., Downey J. E., Wang W., Tyler-Kabara E. C., Weber D. J., McMorland A. J. C., Velliste M., Boninger M. L. and Schwartz A. B. - High-performance neuroprosthetic control by an individual with tetraplegia, Lancet 381 (9866) (2013) 557-564. https://doi.org/10.1016/S0140-6736(12)61816-9.

35. Velliste M., Perel S., Spalding M. C., Whitford A. S. and Schwartz A. B. - Cortical control of a prosthetic arm for self-feeding, Nature 453 (7198) (2008) 1098-1101. https://doi.org/ 10.1038/nature06996.

36. Nisar H., Khow H.-W. and Yeap K. H. - Brain–computer interface: controlling a robotic arm using facial expressions, Turk. J. Electr. Eng. Comput. Sci. 26 (2) (2018) 707-720. https://doi.org/10.3906/elk-1606-296.

37. Duvinage M., Castermans T., Petieau M., Hoellinger T., Cheron G. and Dutoit T. - Performance of the Emotiv Epoc headset for P300-based applications, Biomed. Eng. Online 12 (2013) 56. https://doi.org/10.1186/1475-925X-12-56.

38. Malik A. N., Iqbal J. and Tiwana M. I. - EEG signals classification and determination of optimal feature–classifier combination for predicting the movement intent of lower limb, Proceedings of the 2nd International Conference on Robotics and Artificial Intelligence (ICRAI), Rawalpindi, 2016, pp. 45-49.

39. Staffa M., Giordano M. and Ficuciello F. - A WiSARD Network Approach for a BCI-Based Robotic Prosthetic Control, Int. J. Soc. Robot. 12 (3) (2020) 749-764. https://doi.org/10.1007/s12369-019-00576-1.

40. Uzun Ozsahin D., Duwa B. B., Idoko J. B., Tirah G., Alchoib A., Abuedia A. M. Y., Alshobaki M., Ishimwe D. and Ozsahin I. - Design of interactive neural input device for arm prosthesis, in: Ozsahin D. U. and Ozsahin I. (Eds.), Practical Design and Applications of Medical Devices, Academic Press, 2024, pp. 1-21. https://doi.org/10.1016/B978-0-443-14133-1.00006-9.

41. Kim G. M., Powell J. E., Lacey S. A., Butkus J. A. and Smith D. G. - Current and emerging prostheses for partial hand amputation: A narrative review, PM&R 15 (3) (2023) 392-401. https://doi.org/10.1002/pmrj.12764.

42. Chen Z., Min H., Wang D., Xia Z., Sun F. and Fang B. - A review of myoelectric control for prosthetic hand manipulation, Biomimetics 8 (3) (2023) 328. https://doi.org/10.3390/ biomimetics8030328.

43. Yadav D. and Veer K. - Recent trends and challenges of surface electromyography in prosthetic applications, Biomed. Eng. Lett. 13 (3) (2023) 353-373. https://doi.org/ 10.1007/s13534-023-00281-z.

44. Maiseli B., Abdalla A. T., Massawe L. V., Mbise M., Mkocha K., Nassor N. A., Ismail M., Michael J. and Kimambo S. - Brain–computer interface: trend, challenges, and threats, Brain Inform. 10 (1) (2023) 20. https://doi.org/10.1186/s40708-023-00199-3.

45. Kansal S., Garg D., Upadhyay A., Mittal S. and Talwar G. S. - DL-AMPUT-EEG: Design and development of the low-cost prosthesis for rehabilitation of upper limb amputees using deep-learning-based techniques, Eng. Appl. Artif. Intell. 126 (2023) 106990. https://doi.org/10.1016/j.engappai.2023.106990.

Downloads

Published

12-12-2025

How to Cite

[1]B. Pawar and M. Mungla, “Design and Implementation of a Non-Invasive Brain Computer Interface for Prosthetic ARM”, Vietnam J. Sci. Technol., vol. 63, no. 6, pp. 1205–1223, Dec. 2025.

Issue

Section

Mechanical Engineering - Mechatronics

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 > >> 

You may also start an advanced similarity search for this article.