Forthcoming

Controlling the particle size and pore size of mesoporous SiO2 nanoparticles for enhanced drug loading efficiency

Pham Hoai Linh, Tran Thi Huong, Nguyen Hong Nhung, Nguyen Quoc Dung, Ta Ngoc Bach, Nguyen Thi Ngoc Anh, Nguyen Thanh Nam, Julia A. Fedotova, Nguyen Tien Dung
Author affiliations

Authors

  • Pham Hoai Linh \(^1\) Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet street, Cau Giay district, Ha Noi, Viet Nam
  • Tran Thi Huong \(^1\) Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet street, Cau Giay district, Ha Noi, Viet Nam https://orcid.org/0000-0003-2336-3448
  • Nguyen Hong Nhung \(^1\) Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet street, Cau Giay district, Ha Noi, Viet Nam
  • Nguyen Quoc Dung \(^2\) Faculty of Chemistry, Thai Nguyen University of Education, No. 20 Luong Ngoc Quyen street, Thai Nguyen city, Viet Nam https://orcid.org/0000-0003-0591-0516
  • Ta Ngoc Bach \(^1\) Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet street, Cau Giay district, Ha Noi, Viet Nam
  • Nguyen Thi Ngoc Anh \(^1\) Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet street, Cau Giay district, Ha Noi, Viet Nam
  • Nguyen Thanh Nam \(^3\) University of Transport Technology, 54 Trieu Khuc street, Thanh Xuan, Ha Noi, Viet Nam
  • Julia A. Fedotova \(^4\) Institute for Nuclear Problems, Belarusian State University, Minsk 220006, Belarus
  • Nguyen Tien Dung \(^5\) Faculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy street, Cau Giay district, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/19779

Keywords:

SiO2 nanoparticles, surface area, particle size, pore size, drug loading

Abstract

In this work, we focus on synthesizing mesoporous SiO2 nanoparticles (NPs) with various sizes and pore sizes for enhancing BET surface area to apply in drug delivery by a simple modified Stöber method. By adjusting the ethanol content in the solvent mixture of cetyltrimethylammonium bromide (CTAB), four samples with particle sizes in a range of 50 nm to 350 nm and with average pore size in a range of 2.72 nm to 8.29 nm were obtained. The SiO2 NPs exhibit a mesoporous structure with an amorphous phase, and perfect spherical morphology. The N2 adsorption-desorption analysis reveals that mesoporous SiO2 NPs display high BET surface values, which depend strongly on the synthesis condition as well as the particle diameters and pore sizes. The BET values increase from 848 m2/g to 1019 m2/g when the ethanol content in the solvents decreases from 20 % to 10 %. The Doxorubicin (DOX) loading properties were investigated as well. The highest amount of loaded DOX was achieved with 98 % loading efficiency as 99 μg/mg for the SiO2 NPs with smallest size. The results suggest that the high surface mesoporous SiO2 has great potential in drug delivery applications.

Downloads

Download data is not yet available.

References

Andrade, J. d. L., Moreira, C. A., Oliveira, A. G., de Freitas, C. F., Montanha, M. C., Hechenleitner, A. A. W., Pineda, E. A. G., & de Oliveira, D. M. F. (2021). Rice husk-derived mesoporous silica as a promising platform for chemotherapeutic drug delivery. Waste and Biomass Valorization, 13(1), 241-254. https://doi.org/10.1007/s12649-021-01520-z

Caparrós, C., Benelmekki, M., Martins, P. M., Xuriguera, E., Silva, C. J. R., Martinez, L. M., & Lanceros-Méndez, S. (2012). Hydrothermal assisted synthesis of iron oxide-based magnetic silica spheres and their performance in magnetophoretic water purification. Materials Chemistry and Physics, 135(2–3), 510-517. https://doi.org/10.1016/j.matchemphys.2012.05.016

Chen, Q., Ge, Y., Granbohm, H., & Hannula, S.-P. (2018). Effect of ethanol on Ag@Mesoporous silica formation by in situ modified Stöber method. Nanomaterials, 8(6), 362. https://doi.org/10.3390/nano8060362

Ghaferi, M., Koohi Moftakhari Esfahani, M., Raza, A., Al Harthi, S., Ebrahimi Shahmabadi, H., & Alavi, S. E. (2020). Mesoporous silica nanoparticles: synthesis methods and their therapeutic use-recent advances. Journal of Drug Targeting, 29(2), 131-154. https://doi.org/10.1080/1061186x.2020.1812614

Jafari, S., Derakhshankhah, H., Alaei, L., Fattahi, A., Varnamkhasti, B. S., & Saboury, A. A. (2019). Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomedicine & Pharmacotherapy, 109, 1100-1111. https://doi.org/10.1016/j.biopha.2018.10.167

Karimi, M., Mirshekari, H., Aliakbari, M., Sahandi-Zangabad, P., & Hamblin, M. R. (2016). Smart mesoporous silica nanoparticles for controlled-release drug delivery. Nanotechnology Reviews, 5(2), 195-207. https://doi.org/10.1515/ntrev-2015-0057

Kayal, S., & Ramanujan, R. V. (2010). Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Materials Science and Engineering: C, 30(3), 484-490. https://doi.org/10.1016/j.msec.2010.01.006

Li, Z., Zhang, Y., & Feng, N. (2019). Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery. Expert Opinion on Drug Delivery, 16(3), 219-237. https://doi.org/10.1080/17425247.2019.1575806

Malay, O., Yilgor, I., & Menceloglu, Y. Z. (2013). Effects of solvent on TEOS hydrolysis kinetics and silica particle size under basic conditions. Journal of Sol-Gel Science and Technology, 67(2), 351-361. https://doi.org/10.1007/s10971-013-3088-4

Manzano, M., & Vallet-Regí, M. (2018). Mesoporous silica nanoparticles in nanomedicine applications. Journal of Materials Science: Materials in Medicine, 29(5), 65. https://doi.org/10.1007/s10856-018-6069-x

Mehmood, A., Ghafar, H., Yaqoob, S., Gohar, U. F., & Ahmad, B. (2017). Mesoporous silica nanoparticles: a review. Journal of Developing Drugs, 06(02), 174. https://doi.org/10.4172/2329-6631.1000174

Narayan, R., Nayak, U. Y., Raichur, A. M., & Garg, S. (2018). Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. Pharmaceutics, 10(3), 118. https://doi.org/10.3390/pharmaceutics10030118

Qiao, Z.-A., Zhang, L., Guo, M., Liu, Y., & Huo, Q. (2009). Synthesis of mesoporous silica nanoparticles via controlled hydrolysis and condensation of silicon alkoxide. Chemistry of Materials, 21(16), 3823-3829. https://doi.org/10.1021/cm901335k

Vazquez, N. I., Gonzalez, Z., Ferrari, B., & Castro, Y. (2017). Synthesis of mesoporous silica nanoparticles by sol–gel as nanocontainer for future drug delivery applications. Boletín de la Sociedad Española de Cerámica y Vidrio, 56(3), 139-145. https://doi.org/10.1016/j.bsecv.2017.03.002

Xu, L., Lei, H., Ding, Z., Chen, Y., Ding, R., & Kim, T. (2022). Preparation of the rod-shaped SiO2@C abrasive and effects of its microstructure on the polishing of zirconia ceramics. Powder Technology, 395, 338-347. https://doi.org/10.1016/j.powtec.2021.09.070

Downloads

Published

05-12-2025

How to Cite

Linh, P. H., Huong, T. T., Nhung, N. H., Dung, N. Q., Bach, T. N., Anh, N. T. N., … Dung, N. T. (2025). Controlling the particle size and pore size of mesoporous SiO2 nanoparticles for enhanced drug loading efficiency. Vietnam Journal of Science and Technology. https://doi.org/10.15625/2525-2518/19779

Issue

Section

Materials

Funding data

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 > >> 

You may also start an advanced similarity search for this article.