A comparison of benzene-core PCF optical characteristics with hexagonal and circular lattices

Author affiliations

Authors

DOI:

https://doi.org/10.15625/2525-2518/19491

Keywords:

Photonic crystal fiber, nonlinearity, circular lattice, dispersion, hexagonal lattice

Abstract

This work compares the optical characteristics of benzene photonic crystal fiber with hexagonal lattice (H-PCF) and circular lattice (C-PCF). The difference in the radius between the rings is used to optimize effective area, nonlinearity, attenuation, and chromatic dispersion simultaneously. A series of numerical studies show that the effective mode area and attenuation are small for C-PCF and large for H-PCF geometries. That is the reason why the nonlinear coefficient of H-PCF is larger. Meanwhile, flat dispersion over a wide wavelength range is achieved mostly with H-PCFs in both dispersion modes. Our optimized fibers with near-zero flat dispersion, small loss, and large nonlinearity can enhance supercontinuum generation efficiency to generate a broad spectrum with high coherence.

Downloads

Download data is not yet available.

References

1. Xue P., Liu Q., Lu S., Xia Y., Wu Q., Fu Y. - A review of microstructured optical fibers for sensing applications, Optical Fiber Technol. 77 (2023) 103277. doi.org/10.1016/ j.yofte.2023.103277

2. Ahmed K., Islam M. I., Paul B. K., Islam M. S., Sen S., Chowdhury S., Uddin M. S., Asaduzzaman S., Bahar A. N. - Effect of photonic crystal fiber background materials in sensing and communication applications, Mat. Discovery 7 (2017) 8-14. doi.org/10.1016/ j.md.2017.05.002

3. Agrawal G. P. - Applications of Nonlinear Fiber Optics. Academic Press, New York, 2021.

4. Bunge C., Gries T., Beckers M. - Polymer Optical Fibres, Woodhead Publishing, Sawston (2017)

5. Kumar P., Kumar V., Roy J. S. - Design of quad core photonic crystal fibers with flattened zero dispersion, AEU – Int. J. Electron. Communications 98 (2019) 265-272. doi.org/10.1016/j.aeue.2018.11.014

6. Tran L. T. B., Minh N. H., Dung T. T., Anh T. D., Duy L. P., Phuong N. T. H., Luu M. V., Thuy D. T., Lanh C. V. - Numerical study of linear optical properties of As2S3 glass PCF taking into account the difference in structural parameters, Adv. Opt. Photon. Spectros. Appl. XII (2022) 305-312.

7. Pan C., Han Y., Lu J. - Design and Optimization of Lattice Structures: A Review, Appl. Sci. 10 (18) (2020), 6374. doi.org/10.3390/app10186374

8. McClung A., Mansouree M., Arbabi A. - At-will chromatic dispersion by prescribing light trajectories with cascaded metasurfaces, Light Sci. Appl. 9 (2020) 93. doi.org/10.1038/ s41377-020-0335-7

9. Kim S., Kee C., Lee G. L. - Modified rectangular lattice photonic crystal fibers with high birefringence and negative dispersion, Opt. Express 17 (10) (2009) 7952-7957. doi.org/10.1364/OE.17.007952

10. Hossain S., Shah S., Faisal M. - Ultra-high birefringent, highly nonlinear Ge20Sb15Se65 chalcogenide glass photonic crystal fiber with zero dispersion wavelength for mid-infrared applications, Optik 225 (2021) 165753. doi.org/10.1016/ j.ijleo.2020.165753

11. Trong D. V., Lanh C. V. - Broadband Supercontinuum Generation with Low Peak Power in a Circular Lattice Nitrobenzene-Core Photonic Crystal Fiber, Bull. Lebedev Phys. Inst. 50 (2023) 318-331. doi.org/10.3103/S1068335623080080

12. Shahriar T. A. M. R., Islam O., Tahmid M. I., Alam M. Z., Alam M. S. - Highly coherent supercontinuum generation in circular lattice photonic crystal fibers using low-power pulses, Optik 272 (2023) 170258. doi.org/10.1016/j.ijleo.2022.170258

13. Khalek M. A., Chakma S., Ahmed K., Paul B. K., Vigneswaran D., Zakaria R. - Materials Effect in Sensing Performance Based on Surface Plasmon Resonance Using Photonic Crystal Fiber, Plasmonics, 14 (2019) 861-867. doi.org/10.1007/s11468-018-0867-3

14. Rjeb A., Fathallah H., Chebaane S., Machhout M. - Design of novel circular lattice photonic crystal fiber suitable for transporting 48 OAM modes, Optoelectron. Lett. 17 (8) (2021) 501-506. doi.org/10.1007/s11801-021-0158-7

15. Duc H. T., Tu N. A., Thuy N. T. - A New Design of Ultra-flat Dispersion Photonic Crystal Fiber using Benzene Infiltration, VNU J. Sci. Mathematics - Physi. 39 (1) (2023) 42-52. doi.org/10.25073/2588-1124/vnumap.4762

16. Tran L. T. B., Oanh T. T. C., Thuy N. T., Lanh C. V. - Comparison of chromatic dispersion of circular and hexagonal photonic crystal fibers with chloroform-core, Majlesi J. Electrical Engineering 16 (3) (2022) 55-61. doi.org/10.52547/mjee.16.3.55

17. Tran L. T. B., Lanh C. V. - A new type of supercontinuum generation in hexagonal lattice C6H6-core PCF with broadband and low-power pump, Int. J. Mod. Phys. B 38 (26) (2024) 2450353. doi.org/10.1142/S0217979224503533

18. Tran L. T. B., Lanh C. V. - Simultaneous optimization of optical characteristics of square-shaped benzene-core photonic crystal fiber based on non-uniform air holes, Majlesi J. Electrical Engineer. 18 (1) (2024) 241-251. doi.org/10.30486/mjee.2024.2000133.1307

19. Tran L. T. B., Lanh C. V. - Circular lattice benzene-core PCFs with flat near-zero dispersion for the low-power broad-spectrum supercontinuum generation, Phys. Scr. 99 (4) (2024) 045527. doi.org/10.1088/1402-4896/ad347c

20. Lanh C. V., Tran L. T. B., Thuy N. T., Duc H. T., Trong D. V., Trang D. M., Hoang T. N., Thanh T. D., Khoa D. Q. - Comparison of supercontinuum generation spectral intensity in benzene-core PCFs with different types of lattices in the claddings, Opt. Quant. Electron. 54 (12) (2022) 840. doi.org/10.1007/s11082-022-04218-1

21. Saitoh K., Koshiba M., Hasegawa T., Sasaoka E. - Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion, Opt. Express 11 (8) (2003) 843-852. doi.org/10.1364/OE.11.000843

22. Lanh C. V, Anuszkiewicz A., Ramaniuk A., Kasztelanic R., Khoa D. X., Van C. L, Trippenbach M., Buczyński R. - Supercontinuum generation in photonic crystal fibres with core filled with toluene, J. Opt. 19 (2017) 125604. doi.org/10.1088/2040-8986/aa96bc

23. Dudley J. M., Taylor J. R., - Supercontinuum Generation in Optical Fibers, Cambridge University Press, United Kingdom, 2010.

24. Obayya S., Hameed M. F. O., Areed N. F. F. - Computational Liquid Crystal Photonics: Fundamentals, Modelling and Applications, John Wiley & Sons, Ltd., United Kingdom, 2016.

25. Lee Y. S., Lee C. G., Bahloul F., Kim S., Oh K. - Simultaneously Achieving a Large Negative Dispersion and a High Birefringence Over Er and Tm Dual Gain Bands in a Square Lattice Photonic Crystal Fiber, J. Lightwave Technol. 37 (4) (2019) 1254-1263. doi.org/10.1109/JLT.2019.2891756

26. Hirano M., Tetsuya N., Okuno T. - European patent application published in accordance with Art. 158 (3) EPC, European Patent Office, Patent Application No. EP2008XXXX, 2008.

27. Grzesiak M., Poturaj K., Makara M., Mergo P. - Optical fiber with varied flat chromatic dispersion, Opt. Fiber Technol. 88 (2024) 103972. doi.org/10.1016/j.yofte.2024.103972

28. Hieu L. V., Thuy H. V., Hue N. T., Van C. L., Buczyński R., Kasztelanic R. - Supercontinuum generation in photonic crystal fibers infiltrated with tetrachloroethylene, Opt. Quant. Electron. 53 (2021) 187. doi.org/10.1007/s11082-021-02820-3

29. Thuy N. T., Duc H. T., Tran L. T. B., Trong D. V., Lanh C. V. - Optimization of optical properties of toluene-core photonic crystal fibers with circle lattice for supercontinuum generation, J. Opt., 51 (3) (2022) 678-688. doi.org/10.1007/s12596-021-00802-y.

30. Trong D. V., Lanh C. V. - Supercontinuum generation in C6H5NO2-core photonic crystal fibers with various air-hole size, Mod. Phys. Lett. B 37 (22) (2023) 2350063. 10.1142/S021798492350063X

31. Murphy L. R., Yerolatsitis S., Birks T. A., Stone J. M. - Stack, seal, evacuate, draw: a method for drawing hollow-core fiber stacks under positive and negative pressure, Opt. Express 30 (21) (2022) 37303-37313. doi.org/10.1364/OE.470599

32. Thuy H. V., Kasztelanic R., Filipkowski A., Stępniewski G., Pysz D., Klimczak M., Ertman S., Van C. L., Woliński T. R., Trippenbach M., Khoa D. X., Śmietana M., Buczyński R. - Supercontinuum generation in an all-normal dispersion large core photonic crystal fiber infiltrated with carbon tetrachloride, Opt. Mat. Express 9 (5) (2019) 2264-2278. doi.org/10.1364/OME.9.002264

33. Thuy H. V., Kasztelanic R., Anuszkiewicz A., Stepniewski G., Filipkowski A., Ertman S., Pysz D., Wolinski T., Khoa D. X., Klimczak M., Buczyński R. - All-normal dispersion supercontinuum generation in photonic crystal fibers with large hollow cores infiltrated with toluene, Opt. Mat. Express 8 (11) (2018) 3568-3582. doi.org/10.1364/ OME.8.003568

34. Hieu L. V., Thuy H. V., Stępniewski G., Trung L. C., Ngoc V. T. M., Kasztelanic R., Klimczak M., Pniewski J., Khoa D. X., Heidt A. M., Buczyński R. - Low pump power coherent supercontinuum generation in heavy metal oxide solid-core photonic crystal fibers infiltrated with carbon tetrachloride covering 930–2500 nm, Opt. Express 29 (24) (2021) 39586-39600. doi.org/10.1364/OE.443666

Downloads

Published

28-04-2025

How to Cite

[1]
B. T. Le Tran and L. Chu Van, “A comparison of benzene-core PCF optical characteristics with hexagonal and circular lattices”, Vietnam J. Sci. Technol., vol. 63, no. 2, pp. 378–387, Apr. 2025.

Issue

Section

Electronics - Telecommunication

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.