A comparison of benzene-core PCF optical characteristics with hexagonal and circular lattices
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/19491Keywords:
Photonic crystal fiber, nonlinearity, circular lattice, dispersion, hexagonal latticeAbstract
This work compares the optical characteristics of benzene photonic crystal fiber with hexagonal lattice (H-PCF) and circular lattice (C-PCF). The difference in the radius between the rings is used to optimize effective area, nonlinearity, attenuation, and chromatic dispersion simultaneously. A series of numerical studies show that the effective mode area and attenuation are small for C-PCF and large for H-PCF geometries. That is the reason why the nonlinear coefficient of H-PCF is larger. Meanwhile, flat dispersion over a wide wavelength range is achieved mostly with H-PCFs in both dispersion modes. Our optimized fibers with near-zero flat dispersion, small loss, and large nonlinearity can enhance supercontinuum generation efficiency to generate a broad spectrum with high coherence.
Downloads
References
1. Xue P., Liu Q., Lu S., Xia Y., Wu Q., Fu Y. - A review of microstructured optical fibers for sensing applications, Optical Fiber Technol. 77 (2023) 103277. doi.org/10.1016/ j.yofte.2023.103277
2. Ahmed K., Islam M. I., Paul B. K., Islam M. S., Sen S., Chowdhury S., Uddin M. S., Asaduzzaman S., Bahar A. N. - Effect of photonic crystal fiber background materials in sensing and communication applications, Mat. Discovery 7 (2017) 8-14. doi.org/10.1016/ j.md.2017.05.002
3. Agrawal G. P. - Applications of Nonlinear Fiber Optics. Academic Press, New York, 2021.
4. Bunge C., Gries T., Beckers M. - Polymer Optical Fibres, Woodhead Publishing, Sawston (2017)
5. Kumar P., Kumar V., Roy J. S. - Design of quad core photonic crystal fibers with flattened zero dispersion, AEU – Int. J. Electron. Communications 98 (2019) 265-272. doi.org/10.1016/j.aeue.2018.11.014
6. Tran L. T. B., Minh N. H., Dung T. T., Anh T. D., Duy L. P., Phuong N. T. H., Luu M. V., Thuy D. T., Lanh C. V. - Numerical study of linear optical properties of As2S3 glass PCF taking into account the difference in structural parameters, Adv. Opt. Photon. Spectros. Appl. XII (2022) 305-312.
7. Pan C., Han Y., Lu J. - Design and Optimization of Lattice Structures: A Review, Appl. Sci. 10 (18) (2020), 6374. doi.org/10.3390/app10186374
8. McClung A., Mansouree M., Arbabi A. - At-will chromatic dispersion by prescribing light trajectories with cascaded metasurfaces, Light Sci. Appl. 9 (2020) 93. doi.org/10.1038/ s41377-020-0335-7
9. Kim S., Kee C., Lee G. L. - Modified rectangular lattice photonic crystal fibers with high birefringence and negative dispersion, Opt. Express 17 (10) (2009) 7952-7957. doi.org/10.1364/OE.17.007952
10. Hossain S., Shah S., Faisal M. - Ultra-high birefringent, highly nonlinear Ge20Sb15Se65 chalcogenide glass photonic crystal fiber with zero dispersion wavelength for mid-infrared applications, Optik 225 (2021) 165753. doi.org/10.1016/ j.ijleo.2020.165753
11. Trong D. V., Lanh C. V. - Broadband Supercontinuum Generation with Low Peak Power in a Circular Lattice Nitrobenzene-Core Photonic Crystal Fiber, Bull. Lebedev Phys. Inst. 50 (2023) 318-331. doi.org/10.3103/S1068335623080080
12. Shahriar T. A. M. R., Islam O., Tahmid M. I., Alam M. Z., Alam M. S. - Highly coherent supercontinuum generation in circular lattice photonic crystal fibers using low-power pulses, Optik 272 (2023) 170258. doi.org/10.1016/j.ijleo.2022.170258
13. Khalek M. A., Chakma S., Ahmed K., Paul B. K., Vigneswaran D., Zakaria R. - Materials Effect in Sensing Performance Based on Surface Plasmon Resonance Using Photonic Crystal Fiber, Plasmonics, 14 (2019) 861-867. doi.org/10.1007/s11468-018-0867-3
14. Rjeb A., Fathallah H., Chebaane S., Machhout M. - Design of novel circular lattice photonic crystal fiber suitable for transporting 48 OAM modes, Optoelectron. Lett. 17 (8) (2021) 501-506. doi.org/10.1007/s11801-021-0158-7
15. Duc H. T., Tu N. A., Thuy N. T. - A New Design of Ultra-flat Dispersion Photonic Crystal Fiber using Benzene Infiltration, VNU J. Sci. Mathematics - Physi. 39 (1) (2023) 42-52. doi.org/10.25073/2588-1124/vnumap.4762
16. Tran L. T. B., Oanh T. T. C., Thuy N. T., Lanh C. V. - Comparison of chromatic dispersion of circular and hexagonal photonic crystal fibers with chloroform-core, Majlesi J. Electrical Engineering 16 (3) (2022) 55-61. doi.org/10.52547/mjee.16.3.55
17. Tran L. T. B., Lanh C. V. - A new type of supercontinuum generation in hexagonal lattice C6H6-core PCF with broadband and low-power pump, Int. J. Mod. Phys. B 38 (26) (2024) 2450353. doi.org/10.1142/S0217979224503533
18. Tran L. T. B., Lanh C. V. - Simultaneous optimization of optical characteristics of square-shaped benzene-core photonic crystal fiber based on non-uniform air holes, Majlesi J. Electrical Engineer. 18 (1) (2024) 241-251. doi.org/10.30486/mjee.2024.2000133.1307
19. Tran L. T. B., Lanh C. V. - Circular lattice benzene-core PCFs with flat near-zero dispersion for the low-power broad-spectrum supercontinuum generation, Phys. Scr. 99 (4) (2024) 045527. doi.org/10.1088/1402-4896/ad347c
20. Lanh C. V., Tran L. T. B., Thuy N. T., Duc H. T., Trong D. V., Trang D. M., Hoang T. N., Thanh T. D., Khoa D. Q. - Comparison of supercontinuum generation spectral intensity in benzene-core PCFs with different types of lattices in the claddings, Opt. Quant. Electron. 54 (12) (2022) 840. doi.org/10.1007/s11082-022-04218-1
21. Saitoh K., Koshiba M., Hasegawa T., Sasaoka E. - Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion, Opt. Express 11 (8) (2003) 843-852. doi.org/10.1364/OE.11.000843
22. Lanh C. V, Anuszkiewicz A., Ramaniuk A., Kasztelanic R., Khoa D. X., Van C. L, Trippenbach M., Buczyński R. - Supercontinuum generation in photonic crystal fibres with core filled with toluene, J. Opt. 19 (2017) 125604. doi.org/10.1088/2040-8986/aa96bc
23. Dudley J. M., Taylor J. R., - Supercontinuum Generation in Optical Fibers, Cambridge University Press, United Kingdom, 2010.
24. Obayya S., Hameed M. F. O., Areed N. F. F. - Computational Liquid Crystal Photonics: Fundamentals, Modelling and Applications, John Wiley & Sons, Ltd., United Kingdom, 2016.
25. Lee Y. S., Lee C. G., Bahloul F., Kim S., Oh K. - Simultaneously Achieving a Large Negative Dispersion and a High Birefringence Over Er and Tm Dual Gain Bands in a Square Lattice Photonic Crystal Fiber, J. Lightwave Technol. 37 (4) (2019) 1254-1263. doi.org/10.1109/JLT.2019.2891756
26. Hirano M., Tetsuya N., Okuno T. - European patent application published in accordance with Art. 158 (3) EPC, European Patent Office, Patent Application No. EP2008XXXX, 2008.
27. Grzesiak M., Poturaj K., Makara M., Mergo P. - Optical fiber with varied flat chromatic dispersion, Opt. Fiber Technol. 88 (2024) 103972. doi.org/10.1016/j.yofte.2024.103972
28. Hieu L. V., Thuy H. V., Hue N. T., Van C. L., Buczyński R., Kasztelanic R. - Supercontinuum generation in photonic crystal fibers infiltrated with tetrachloroethylene, Opt. Quant. Electron. 53 (2021) 187. doi.org/10.1007/s11082-021-02820-3
29. Thuy N. T., Duc H. T., Tran L. T. B., Trong D. V., Lanh C. V. - Optimization of optical properties of toluene-core photonic crystal fibers with circle lattice for supercontinuum generation, J. Opt., 51 (3) (2022) 678-688. doi.org/10.1007/s12596-021-00802-y.
30. Trong D. V., Lanh C. V. - Supercontinuum generation in C6H5NO2-core photonic crystal fibers with various air-hole size, Mod. Phys. Lett. B 37 (22) (2023) 2350063. 10.1142/S021798492350063X
31. Murphy L. R., Yerolatsitis S., Birks T. A., Stone J. M. - Stack, seal, evacuate, draw: a method for drawing hollow-core fiber stacks under positive and negative pressure, Opt. Express 30 (21) (2022) 37303-37313. doi.org/10.1364/OE.470599
32. Thuy H. V., Kasztelanic R., Filipkowski A., Stępniewski G., Pysz D., Klimczak M., Ertman S., Van C. L., Woliński T. R., Trippenbach M., Khoa D. X., Śmietana M., Buczyński R. - Supercontinuum generation in an all-normal dispersion large core photonic crystal fiber infiltrated with carbon tetrachloride, Opt. Mat. Express 9 (5) (2019) 2264-2278. doi.org/10.1364/OME.9.002264
33. Thuy H. V., Kasztelanic R., Anuszkiewicz A., Stepniewski G., Filipkowski A., Ertman S., Pysz D., Wolinski T., Khoa D. X., Klimczak M., Buczyński R. - All-normal dispersion supercontinuum generation in photonic crystal fibers with large hollow cores infiltrated with toluene, Opt. Mat. Express 8 (11) (2018) 3568-3582. doi.org/10.1364/ OME.8.003568
34. Hieu L. V., Thuy H. V., Stępniewski G., Trung L. C., Ngoc V. T. M., Kasztelanic R., Klimczak M., Pniewski J., Khoa D. X., Heidt A. M., Buczyński R. - Low pump power coherent supercontinuum generation in heavy metal oxide solid-core photonic crystal fibers infiltrated with carbon tetrachloride covering 930–2500 nm, Opt. Express 29 (24) (2021) 39586-39600. doi.org/10.1364/OE.443666
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.