Silver nanoparticles synthesized using S. nervosum leaf extract, and their antibacterial and antifungal activity

Cong Hong Hanh1, *, Pham Sy Hieu1, Nguyen Hong Nhung1, Tran Que Chi1, Tran Thi Huong1, Pham Duy Khanh1, Pham Thi Gam2, Nguyen Van Phuong3, Phan Thi Thanh Nga4, Hoang Hien Y5, 6, Dao My Uyen5, 6, Hoang Anh Son1, *

Hong Hanh Cong, Pham Sy Hieu, Nguyen Hong Nhung, Tran Que Chi, Tran Thi Huong, Pham Duy Khanh, Pham Thi Gam, Nguyen Van Phuong, Phan Thi Thanh Nga, Hoang Hien Y, Dao My Uyen, Hoang Anh Son
Author affiliations

Authors

  • Hong Hanh Cong Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do ward, Ha Noi, Viet Nam https://orcid.org/0000-0002-9638-6168
  • Pham Sy Hieu Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do ward, Ha Noi, Viet Nam
  • Nguyen Hong Nhung Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do ward, Ha Noi, Viet Nam
  • Tran Que Chi Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do ward, Ha Noi, Viet Nam
  • Tran Thi Huong Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do ward, Ha Noi, Viet Nam
  • Pham Duy Khanh Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do ward, Ha Noi, Viet Nam
  • Pham Thi Gam Faculty of Pharmacy, Ha Noi University of Business and Technology, Vinh Tuy ward, Ha Noi, Viet Nam
  • Nguyen Van Phuong University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do ward, Ha Noi, Viet Nam
  • Phan Thi Thanh Nga Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet, Dien Hong ward, Ho Chi Minh, Viet Nam
  • Hoang Hien Y Center for Advanced Chemistry, Institute of Research & Development, Duy Tan University, Da Nang, Viet Nam
  • Dao My Uyen Faculty of Natural Sciences, Duy Tan University, Da Nang, Viet Nam
  • Hoang Anh Son Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do ward, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/19366

Keywords:

Green synthesis, AgNPs, S. nervosum, antibacterial activity, antifungal activity

Abstract

In this study, the green synthesis of silver nanoparticles (AgNPs) was performed using S.nervosum leaf extract, and their physicochemical characterization was also studied. The characteristic surface plasmon resonance peak observed in the visible region at 435 nm is consistent with previous reports of silver nanoparticle formation. The synthesized AgNPs were also characterized by SEM, TEM, XRD, and FTIR, which revealed their nearly spherical shape, with a diameter mainly in the 10 - 30 nm range. The antimicrobial activity of AgNPs was studied using the agar well diffusion method on four clinically significant pathogenic microorganisms (P. aeruginosa ATCC 27853; E. coli ATCC 35218, S. aureus ATCC 12493; S. aureus Mastitis isolate). The results showed that the green-synthesized AgNPs exhibited antimicrobial activity at most studied concentrations, including the antibacterial effect against the S. Aureus (Mastitis isolate) strain, which was found to be resistant to Tetracycline at 100 µg/L. The antifungal activity of these nanoparticles was also studied on Colletotrichum gloeopsoriodes by colony formation assay. The green synthesis of AgNPs was successfully conducted for the first time using the aqueous extract of S. nervosum. The results of this study indicate that the silver nanoparticles have potential applications as antibacterial and antifungal agents.

Downloads

Download data is not yet available.

References

1. Jamkhande P. G., Ghule N. W., Bamer A. H., Kalaskar M. G. - Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications, Journal of Drug delivery Science and Technology 53 (2019) 101174.

2. Ingle A. P., Duran N., Rai M. - Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review, Applied microbiology and Biotechnology 98 (2014) 1001-1009.

3. Wu B., Kuang Y., Zhang X., Chen J. - Noble metal nanoparticles/carbon nanotubes nanohybrids: synthesis and applications, Nano Today 6 (1) (2011) 75-90.

4. Zhang F., Zhu Y., Lin Q., Zhang L., Zhang X., Wang H. - Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis, Energy & Environmental Science 14 (5) (2021) 2954-3009.

5. Klębowski B., Depciuch J., Parlinska-Wojtan M., Baran J. - Applications of noble metal-based nanoparticles in medicine, International Journal of Molecular Sciences 19 (12) (2018) 4031.

6. Doria G., Conde J., Veigas B., Giestas L., Almeida C., Assunção M., Rosa J., Baptista P. V. - Noble metal nanoparticles for biosensing applications, Sensors 12 (2) (2012) 1657-1687.

7. Yang T. H., Ahn J., Shi S., Wang P., Gao R., Qin D. - Noble-metal nanoframes and their catalytic applications, Chemical Reviews 121 (2) (2020) 796-833.

8. Emam H. E., El-Zawahry M. M., Ahmed H. B. - One-pot fabrication of agnps, aunps and ag-au nanoalloy using cellulosic solid support for catalytic reduction application, Carbohydrate polymers 166 (2017) 1-13.

9. Qu J. C., Ren C. L., Dong Y. L., Chang Y. P., Zhou M., Chen X. G. - Facile synthesis of multifunctional graphene oxide/agnps-fe3o4 nanocomposite: A highly integrated catalysts, Chemical engineering journal 211 (2012) 412-420.

10. Yang J., Chen Y., Zhao L., Feng Z., Peng K., Wei A., Wang Y., Tong Z., Cheng B. - Preparation of a chitosan/carboxymethyl chitosan/AgNPs polyelectrolyte composite physical hydrogel with self-healing ability, antibacterial properties, and good biosafety simultaneously, and its application as a wound dressing, Composites Part B: Engineering 197 (2020) 108139.

11. Yang Y., Zhang C., Hu Z. - Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion, Environmental Science: Processes & Impacts 15 (1) (2013) 39-48.

12. Singh S., Bharti A., Meena V. K. - Structural, thermal, zeta potential and electrical properties of disaccharide reduced silver nanoparticles, Journal of Materials Science: Materials in Electronics 25 (2014) 3747-3752.

13. Herrera-Marin P., Fernandez L., Pilaquinga F., Debut A., Rodriguez A., Espinoza-Montero P. - Green synthesis of silver nanoparticles using aqueous extract of the leaves of fine aroma cocoa theobroma cacao linneu (malvaceae): Optimization by electrochemical techniques, Electrochimica Acta (2023) 142122.

14. Wei L., Lu J., X. H., Patel A., Chen Z. S., Chen G. - Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug discovery today 20 (5) (2015) 595-601.

15. Thi H. P. N., Thi K. T. P., Nguyen T. T., Nguyen P. T., Vu T. T., Le H. T., Dang T. D., Huynh D. C., Mai H. T., La D.D ., et al. - Green synthesis of an Ag nanoparticle-decorated graphene nanoplatelet nanocomposite by using cleistocalyx operculatus leaf extract for antibacterial applications, NanoStructures & Nano-Objects 29 (2022) 100810.

16. Pourzahedi L., Eckelman M. J. - Comparative life cycle assessment of silver nanoparticle synthesis routes, Environmental Science: Nano 2 (4) (2015) 361-369.

17. Kapoor R. T., Salvadori M. R., Rafatullah M., Siddiqui M. R., Khan M. A., Alshareef S. A. - Exploration of microbial factories for synthesis of nanoparticles–a sustainable approach for bioremediation of environmental contaminants, Frontiers in Microbiology 12 (2021) 658294.

18. Ahmed S. F., Mofijur M., Rafa N., Chowdhury A. T., Chowdhury S., Nahrin M., Islam A. S., Ong H. C. - Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges, Environmental Research 204 (2022) 111967.

19. Bharadwaj K. K., Rabha B., Pati S., Sarkar T., Choudhury B. K., Barman A., Bhattacharjya D., Srivastava A., Baishya D., Edinur H.A., et al. - Green synthesis of gold nanoparticles using plant extracts as beneficial prospect for cancer theranostics, Molecules 26 (21) (2021), 6389.

20. Kuppusamy P., Yusoff M. M., Maniam G. P., Govindan N. - Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications–an updated report, Saudi Pharmaceutical Journal 24 (4) (2016) 473-484.

21. Jalab J., Abdelwahed W., Kitaz A., Al-Kayali R. - Green synthesis of silver nanoparticles using aqueous extract of acacia cyanophylla and its antibacterial activity, Heliyon 7 (9) (2021) 08033.

22. Guimaraes M. L., Silva F. A. G., Costa M. M., Oliveira H. P. - Green synthesis of silver nanoparticles using ziziphus joazeiro leaf extract for production of antibacterial agents, Applied Nanoscience 10 (2020) 1073-1081.

23. Pham G. N., Nguyen T. T. T., Nguyen-Ngoc H. - Ethnopharmacology, phytochemistry, and pharmacology of Syzygium nervosum, Evidence-Based Complementary and Alternative Medicine 2020 (2020) eCollection. DOI 10.1155/2020/8263670.

24. Nguyen T. H. P., Pham T. K. T., Nguyen T. L., et al. - Green synthesis of an Ag nanoparticle-decorated graphene nanoplatelet nanocomposite by using Cleistocalyx operculatus leaf extract for antibacterial applications, Nanostructures & Nano-Objects 29 (2022) 100810.

25. Bruna T., Maldonado-Bravo F., Jara P., and Caro N. - Silver nanoparticles and their antibacterial applications, Int. J. Mol. Sci. 22 (13) (2021) 7202.

26. Cheng G., Dai M., Ahmed S., et al. - Antimicrobial drugs in fighting against antimicrobial resistance.,Front. Microbiol. 7 (2016) 470. doi: 10.3389/fmicb.2016.00470.

27. Balouiri M., Sadiki M., Ibnsouda S. K. - Methods for in vitro evaluating antimicrobial activity: A review, Journal of pharmaceutical analysis 6 (2) (2016) 71-79.

28. Magaldi S., Mata-Essayag S., De Capriles C. H., Pérez C., Colella M., Olaizola C., Ontiveros Y. - Well diffusion for antifungal susceptibility testing, International Journal of Infectious Diseases 8 (1) (2004) 39-45.

29. Wollenberg R. D., Donau S. S., Nielsen T. T., Sørensen J. L., Giese H., Wimmer R., Søndergaard T. E. - Real-time imaging of the growth-inhibitory effect of JS399-19 on Fusarium, Pesticide Biochemistry and Physiology 134 (2016) 24-30.

30. Kim S. W., Jung J. H., Lamsal K., Kim Y. S., Min J. S., Lee Y. S. - Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi, Mycobiology 40 (1) (2012) 53-58.

31. Hu M., Novo C., Funston A., Wang H., Staleva H., Zou S., Mulvaney P., Xia Y., Hartland G. V. - Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance, Journal of materials chemistry 18 (17) (2008) 1949-1960.

32. Venkatesham M., Ayodhya D., Madhusudhan A., Veera Babu N., Veerabhadram G. - A novel green one-step synthesis of silver nanoparticles using chitosan: catalytic activity and antimicrobial studies. Applied Nanoscience 4 (2014) 113–119.

33. Hanafiah R.M., Ghafar S.A.A., Lim V., Musa S.N.A., Yakop F., Anuar A.H.H.– Green synthesis, characterisation and antibacterial activities of Strobilanthes crispus - mediated silver nanoparticles (SC-AGNPS) against selected bacteria, Artificial Cells, Nanomedicine, and Biotechnology 51 (1) (2023) 549-559.

34. Yusuf S. N. A. M., Mood C. N. A. C., Ahmad N. H. - Optimization of biogenic synthesis of silver nanoparticles from flavonoid-rich Chinacanthus nutans leaf and stem aqueous extracts, R. Soc. Open Sci. 7 (2020) 200065.

35. Parthipan P., AlSalhi M. S., Devanesan S., Rajasekar A. - Evaluation of Syzygium aromaticum aqueous extract as an eco-friendly inhibitor for microbiologically influenced corrosion of carbon steel in oil reservoir environment, Bioprocess and Biosystems Engineering 44 (2021) 1441-1452.

36. Chand K., Abro M. I., Aftab U., Shah A. H., Lakhan M. N., Cao D., Mehdi G., Mohamed A. M. A. - Green synthesis characterization and antimicrobial activity against staphylococcus aureus of silver nanoparticles using extracts of neem, onion and tomato, RSC advances 9 (30) (2019) 17002-17015.

37. Saadh M. - Effect of silver nanoparticles on the antibacterial activity of Levofloxacin against methicillinresistant staphylococcus aureus, Eur. Rev. Med. Pharmacol. Sci 25 (17) (2021) 5507-5510.

38. Salah R., Karmy M., Abdelraouf A., Kotb S. - Evaluation of the bactericidal effect of silver nanoparticles against methicillin resistant staphylococcus aureus (MRSA) and methicillin sensitive staphylococcus aureus (MSSA) strains isolated from mastitic milk of small ruminants and their surrounding environment in Aswan, Egypt, Journal of Veterinary Medical Research 27 (2) (2020) 143-151.

39. Mirzajani F., Ghassempour A., Aliahmadi A., Esmaeili M. A. - Antibacterial effect of silver nanoparticles on Staphylococcus aureus, Research in microbiology 162 (5) (2011) 542-549.

40. Qasim M., Udomluck N., Chang J., Park H., Kim K. - Antimicrobial activity of silver nanoparticles encapsulated in poly-n-isopropylacrylamide-based polymeric nanoparticles, International journal of nanomedicine 13 (2018) 235.

41. Dibrov P., Dzioba J., Gosink K.K., Hase C. C. - Chemiosmotic mechanism of antimicrobial activity of Ag+ in vibrio cholerae, Antimicrobial agents and chemotherapy 46 (8) (2022) 2668-2670.

Downloads

Published

22-12-2025

How to Cite

[1]H. H. Cong, “Silver nanoparticles synthesized using S. nervosum leaf extract, and their antibacterial and antifungal activity : Cong Hong Hanh1, *, Pham Sy Hieu1, Nguyen Hong Nhung1, Tran Que Chi1, Tran Thi Huong1, Pham Duy Khanh1, Pham Thi Gam2, Nguyen Van Phuong3, Phan Thi Thanh Nga4, Hoang Hien Y5, 6, Dao My Uyen5, 6, Hoang Anh Son1, *”, Vietnam J. Sci. Technol., vol. 63, no. 6, pp. 1160–1173, Dec. 2025.

Issue

Section

Environment

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

You may also start an advanced similarity search for this article.