ZnCo2O4 nanosheets as an efficient electrochemical sensing platform for determination of paracetamol
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/19061Keywords:
ZnCo2O4, paracetamol, electrochemical sensorAbstract
ZnCo2O4 nanosheets (ZCO) were synthesized by a simple method using microwave-assisted hydrothermal technique. X-ray diffraction (XRD), UV-vis spectroscopy (UV-vis), and scanning electron microscope (SEM) methods were used to study the structural characteristics, morphologies, and sizes of the synthesized materials. A ZnCo2O4 nanosheet-modified screen-printed electrode (ZCO/SPE) acted as an effective electrochemical sensor for determining paracetamol (PCM). The PCM oxidation peak current response for ZCO/SPE was 37.7 percent higher than that of bare SPE. Under optimized conditions, the ZnCo2O4-based electrochemical sensor exhibited a linear response from 0.5 to 100 µM with a high electrochemical sensitivity of 4.27 µA µM-1cm-2 and a limit of detection (LOD) of 0.19 µM. In addition, the as-synthesized electrochemical sensors had high anti-interference ability and excellent stability for the determination of PCM.
Downloads
References
1. Hochberg M. C., and Dougados M. - Pharmacological therapy of osteoarthritis, Clin. Rheumatol 15 (4) (2001) 583-593. https://doi.org/10.1053/berh.2001.0175.
2. Porter R. W., and Ralston S. H. - Pharmacological management of back pain syndromes, Drugs. 48 (2) (1994) 189-98. https://doi.org/10.2165/00003495-199448020-00006.
3. Mazer M., and Perrone J. - Acetaminophen-induced nephrotoxicity: pathophysiology, clinical manifestations, and management, J. Med. Toxicol 4 (1) (2008) 2-6. https://doi.org/10.1007/BF03160941.
4. Olaleye M. T., and Rocha B. T. - Acetaminophen-induced liver damage in mice: effects of some medicinal plants on the oxidative defense system, Exp. Toxicol. Pathol. 59 (5) (2008) 319-27. https://doi.org/10.1016/j.etp.2007.10.003.
5. Cunha R. R., Ribeiro M. M. A. C., Muñoz R. A. A., and Richter, E. M. - Fast determination of codeine, orphenadrine, promethazine, scopolamine, tramadol, and paracetamol in pharmaceutical formulations by capillary electrophoresis, J. Sep. Sci. 40 (8) (2017) 1815-1823. https://doi.org/10.1002/jssc.201601275.
6. Tsvetkova B., Pencheva I., Zlatkov A., and Peikov P. - Simultaneous high-performance liquid chromatography determination of paracetamol and ascorbic acid in tablet dosage forms, Afr. J. Pharm. Pharmacol. 6 (17) (2012) 1332-1336. https://doi.org/ 10.5897/AJPP12.163.
7. Mallah M. A., Sherazi S. T. H., Bhanger M. I., Mahesar, S. A., and Bajeer M. A. - A rapid Fourier-transform infrared (FTIR) spectroscopic method for direct quantification of paracetamol content in solid pharmaceutical formulations. Spectrochim, Acta - A: Mol. Biomol. Spectrosc 141 (2015) 64-70. https://doi.org/10.1016/j.saa.2015.01.036.
8. Narang J., Malhotra N., Singh S., Singh G., and Pundir C. S. - Monitoring analgesic drug using sensing method based on nanocomposite, RSC Adv. 5 (4) (2015) 2396-2404. https://doi.org/10.1039/C4RA11255E.
9. Li J., Liu J., Tan G., Jiang J., Peng S., Deng M., Qian D., Feng Y., and Liu Y. J. - High-sensitivity paracetamol sensor based on Pd/graphene oxide nanocomposite as an enhanced electrochemical sensing platform, Biosens. Bioelectron 54 (2014) 468-475. https://doi.org/10.1016/j.bios.2013.11.001.
10. Xu Z., Teng H., Song J., Gao F., Ma L., Xu G., Luo X. - A nanocomposite consisting of MnO2 nanoflowers and the conducting polymer PEDOT for highly sensitive amperometric detection of paracetamol, Mikrochim. Acta 186 (2019) 1-8. https://doi.org/ 10.1007/s00604-019-3614-3.
11. Kang X., Wang J., Wu H., Liu J., Aksay I. A., and Lin Y. - A graphene-based electrochemical sensor for sensitive detection of paracetamol, Talanta 82 (3) (2010) 754-759. https://doi.org/10.1016/j.talanta.2010.01.009.
12. Qian L., Durairaj S., Prins S., and Chen A. - Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds, Biosens Bioelectron 175 (2021) 112836. https://doi.org/10.1016/j.bios.2020.112836.
13. dos Santos O. A. L., Sneha M., Devarani T., Bououdina M., Backx B. P., Vijaya J. J., and Bellucci S. - Perovskite/Spinel based graphene derivatives electrochemical and biosensors, J. Electrochem. Soc. 168 (6) (2021) 067506. https://doi.org/10.1149/1945-7111/ac0306.
14. Gonçalves J. M., Rocha D. P., Silva M. N. T., Martins P. R., Nossol E., Angnes L., Rout C. S., and Munoz R. A. A. - Feasible strategies to promote the sensing performances of spinel MCo2O4 (M = Ni, Fe, Mn, Cu and Zn) based electrochemical sensors: a review, J. Mater. Chem. C. 9 (25) (2019) 7852-7887. https://doi.org/10.1039/D1TC01550H.
15. Li Y., Chu Y., Li Y., Ma C., and Li L. - A novel electrochemiluminescence biosensor: Inorganic-organic nanocomposite and ZnCo2O4 as the efficient emitter and accelerator, Sens. Actuators B Chem. 303 (2020) 127222. https://doi.org/10.1016/j.snb.2019.127222.
16. Zhang N., Lu Y., Fan Y., Zhou J., Li X., Adimi S., Liu C., and Ruan S. - Metal–organic framework-derived ZnO/ZnCo2O4 microspheres modified by catalytic PdO nanoparticles for sub-ppm-level formaldehyde detection, Sens. Actuators B Chem. 315 (2020) 128118. https://doi.org/10.1016/j.snb.2020.128118.
17. Aruchamy K., Balasankar A., Ramasundaram S., and Oh T. H. - Recent Design and Synthesis Strategies for High-Performance Supercapacitors Utilizing ZnCo2O4-Based, Electrode Materials 16 (15) (2023) 5604. https://doi.org/10.3390/en16155604.
18. Mai Tho N. T., Van Cuong N., Luu Thi V. H., Thang N. Q., and Dang P. H. - A novel n–p heterojunction Bi2S3/ZnCo2O4 photocatalyst for boosting visible-light-driven photocatalytic performance toward indigo carmine, RSC adv. 13 (24) (2023) 16248-16259. https://doi.org/10.1039/D3RA02803H.
19. Zhang J., Cui S., Ding Y., Yang X., Guo K., and Zhao J.-T. - Two-dimensional mesoporous ZnCo2O4 nanosheets as a novel electrocatalyst for detection of o-nitrophenol and p-nitrophenol, Biosens. Bioelectron 112 (2018) 177-185. https://doi.org/10.1016/j.bios.2018.03.021.
20. Kim D. S., Moon I. K., Yang J. H., Choi K., Oh J., and Kim S. W. - Mesoporous ZnCo2O4 nanowire arrays with oxygen vacancies and N-dopants for significant improvement of non-enzymatic glucose detection, J. Electroanal. Chem. 878 (2020) 114585. https://doi.org/10.1016/j.jelechem.2020.114585.
21. Naik K. K., and Rout C. S. - Electrodeposition of ZnCo2O4 nanoparticles for biosensing applications, RSC adv. 5 (97) (2015) 79397-79404. https://doi.org/10.1039/ C5RA11011D.
22. Zhang J., Cui S., Ding Y., Yang X., Guo K., and Zhao J. T. - Two-dimensional mesoporous ZnCo2O4 nanosheets as a novel electrocatalyst for detection of o-nitrophenol and p-nitrophenol, Biosens. Bioelectron 112 (2018) 177-185. https://doi.org/10.1016/ j.bios.2018.03.021.
23. Liu S., Zeng W., and Li Y. - Synthesis of ZnCo2O4 microrods grown on nickel foam for non-enzymatic glucose sensing, Mater. Lett. 259 (2020) 126820. https://doi.org/ 10.1016/j.matlet.2019.126820.
24. Xiao X., Wang G., Zhang M., Wang Z., Zhao R., and Wang Y. - Electrochemical performance of mesoporous ZnCo2O4 nanosheets as an electrode material for supercapacitor, Ionics 24 (2018) 2435-2443. https://doi.org/10.1007/s11581-017-2354-9.
25. Wang W., Chen L., Qi J., Sui Y., He Y., Meng Q., Wei F., and Sun Z. - All-solid-state asymmetric supercapacitor based on N-doped activated carbon derived from polyvinylidene fluoride and ZnCo2O4 nanosheet arrays, J. Mater. Sci.: Mater. Electron. 29 (2018) 2120-2130. https://doi.org/10.1007/s10854-017-8124-7.
26. Silambarasan M., Ramesh P., Geetha D., Ravikumar K., Ali H. E., Algarni H., Soundhirarajan P., Chandekar K. V., and Shkir M. - A Facile Preparation of Zinc Cobaltite (ZnCo2O4) Nanostructures for Promising Supercapacitor Applications, J. Inorg. Organomet. Polym. Mater. 31 (2021) 3905-3920. https://doi.org/10.1007/s10904-021-02077-z.
27. Huyen N. N., Tung L. M., Nguyen T. A., Huong Phung T. L., Thang P. D., Vinh N. T., Van Nguyen Q., Oanh Vu T. K., Lam V. D., Le -A. T. - Insights into the Effect of Cation Distribution at Tetrahedral Sites in ZnCo2O4 Spinel Nanostructures on the Charge Transfer Ability and Electrocatalytic Activity toward Ultrasensitive Detection of Carbaryl Pesticide in Fruit and Vegetable Samples, J. Phys. Chem. C. 127 (25) (2023) 12262-12275. https://doi.org/10.1021/acs.jpcc.3c02039.
28. Liu W., Hu S., Wang Y., Zhang B., Jin R., and Hu L. - Anchoring Plasmonic Ag@AgCl Nanocrystals onto ZnCo2O4 Microspheres with Enhanced Visible Photocatalytic Activity, Nanoscale Res. Lett. 14 (1) (2019) 108. https://doi.org/10.1186/s11671-019-2922-1.
29. Mater Mahnashi H., Mahmoud A. M., Saad Alkahtani A., and El-Wekil M. M. - Simultaneous electrochemical detection of azithromycin and hydroxychloroquine based on VS2 QDs embedded N, S @graphene aerogel/cCNTs 3D nanostructure, Microchem J. 163 (2021) 105925. https://doi.org/10.1016/j.microc.2021.105925.
30. Huyen N. N., Dinh N. X., Doan M. Q., Vu N. P., Das R., Le M. T., Thang P. D., and Le A. T. - Unraveling the roles of morphology and steric hindrance on electrochemical analytical performance of α-Fe2O3 nanostructures-based nanosensors towards chloramphenicol antibiotic in shrimp samples, J. Electrochem Soc. 169 (2) (2022) 026507. https://doi.org/10.1149/1945-7111/ac4db0.
31. Nematollahi D., Shayani-Jam H., Alimoradi M., Niroomand S. - Electrochemical oxidation of acetaminophen in aqueous solutions: Kinetic evaluation of hydrolysis, hydroxylation and dimerization processes, Electrochim. Acta 54 (28) (2009) 7407-7415. https://doi.org/10.1016/j.electacta.2009.07.077.
32. Shafiei H., Haqgu M., Nematollahi D., and Gholami M. R. - An experimental and computational study on the rate constant of electrochemically generated N-acetyl-p-quinoneimine with dimethylamine, J. Electrochem Sci. 3 (10) (2008) 1092-1107. https://doi.org/10.1016/S1452-3981(23)15506-4.
33. Nematollahi, D.; Momeni, S.; Khazalpour, S. - A green electrochemical method for the synthesis of acetaminophen derivatives, J. Electrochem Soc. 161 (3) (2013) H75. https://doi.org/10.1149/2.022403jes.
34. Yin T., Li H., Su L., Liu S., Yuan C., Fu D. - The catalytic effect of TiO 2 nanosheets on extracellular electron transfer of Shewanella loihica PV-4, Phys. Chem. Chem. Phys. 18 (43) (2016) 29871-29878. https://doi.org/10.1039/C6CP04509J.
35. Uzun Demet. - Determination of paracetamol based on 3‐amino‐4H‐1, 2, 4‐triazole coated glassy carbon surface in pharmaceutical sample, Electroanalysis 33 (7) (2021) 1699-1706. https://doi.org/10.1002/elan.202100002.
36. Sadok I., and Tyszczuk-Rotko K. - New, simple and sensitive voltammetric procedure for determination of paracetamol in pharmaceutical formulations, Anal. Chem. Insights 1 (1) (2015). https://doi.org/10.4172/2470-9867.100001.
37. Rodrigues Filho G., Almeida F., Ribeiro S. D., Tormin T. F., Muñoz R. A., Assunção R. M., Barud H. J. D. D., and Pharmacy I. - Controlled release of drugs from cellulose acetate matrices produced from sugarcane bagasse: monitoring by square-wave voltammetry, Drug. Dev. Ind. Pharm. 42 (7) (2016) 1066-1072. https://doi.org/ 10.3109/03639045.2015.1107093.
38. Noviandri I., and Rakhmana R. - Carbon Paste Electrode Modified with Carbon Nanotubes and Poly(3-Aminophenol) for Voltammetric Determination of Paracetamol, Int. J. Electrochem. Sci. 7 (5) (2012) 4479-4487. https://doi.org/10.1016/S1452-3981(23)19554-
39. Li M., and Jing L. - Electrochemical behavior of acetaminophen and its detection on the PANI–MWCNTs composite modified electrode, Electrochim Acta 52 (9) (2007) 3250-3257. https://doi.org/10.1016/j.electacta.2006.10.001.
40. Narayana P. V., Reddy T. M., Gopal P., and Naidu G. R. - Electrochemical sensing of paracetamol and its simultaneous resolution in the presence of dopamine and folic acid at a multi-walled carbon nanotubes/poly(glycine) composite modified electrode, Anal. Methods 6 (23) (2014) 9459-9468. https://doi.org/10.1039/C4AY02068E.
41. Alothman Z. A., Bukhari N., Wabaidur S. M., and Haider S. - Simultaneous electrochemical determination of dopamine and acetaminophen using multiwall carbon nanotubes modified glassy carbon electrode, Sens. Actuators B: Chem. 146 (1) (2010) 314-320. https://doi.org/10.1016/j.snb.2010.02.024.
42. Tajik S., Sharifi F., Aflatoonian B., and Mohammadi S. Z. - An Efficient Electrochemical Sensor Based on NiCo2O4 Nanoplates and Ionic Liquid for Determination of Favipiravir in the Presence of Acetaminophen, Biosens. 13 (8) (2023) 814. https://doi.org/10.3390/bios13080814.
43. Hasanpour F., Taei M., and Tahmasebi S. - Ultra-sensitive electrochemical sensing of acetaminophen and codeine in biological fluids using CuO/CuFe2O4 nanoparticles as a novel electrocatalyst, J. Food Drug Anal. 26 (2) (2018) 879-886. https://doi.org/ 10.1016/j.jfda.2017.10.001.
44. Annadurai K., Sudha V., Murugadoss G., and Thangamuthu R. - Electrochemical sensor based on hydrothermally prepared nickel oxide for the determination of 4-acetaminophen in paracetamol tablets and human blood serum samples, J. Alloys Compd. 852 (2021) 156911. https://doi.org/10.1016/j.jallcom.2020.156911.
45. Shahmiri M. R., Bahari A., Karimi-Maleh H., Hosseinzadeh R., and Mirnia N. - Ethynylferrocene–NiO/MWCNT nanocomposite modified carbon paste electrode as a novel voltammetric sensor for simultaneous determination of glutathione and acetaminophen, Sens. Actuators B: Chem. 177 (2013) 70-77. https://doi.org/ 10.1016/j.snb.2012.10.098.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.