Fabrication and characterization of pulsed electron beam deposited TiO2 thin films with glancing angle deposition techniques for biosensing application

Quang-Duy Dao, Tri-Nghia Nguyen, Duy Thien Nguyen, Tung Nguyen Dinh Hai, Thi Huong Vu, Tuan Tu Le, Thanh Mai Vu, Van Vu Le
Author affiliations

Authors

  • Quang-Duy Dao Faculty of Physics, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Viet Nam https://orcid.org/0000-0002-5677-3737
  • Tri-Nghia Nguyen Faculty of Physics, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Viet Nam
  • Duy Thien Nguyen Faculty of Physics, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Viet Nam
  • Tung Nguyen Dinh Hai Faculty of Physics, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Viet Nam
  • Thi Huong Vu Falculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Ha Noi, Viet Nam
  • Tuan Tu Le Faculty of Physics, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Viet Nam
  • Thanh Mai Vu Department of Mechanical and Nuclear Engineering, University of Sharjah, PO.BOX, 27272, Sharjah, United Arab Emirates
  • Van Vu Le Faculty of Physics, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/18203

Keywords:

thin film, glancing angle deposition, titanium dioxide, pulsed electron deposition

Abstract

We demonstrated fabrication and characterization of TiO2 thin films using pulsed electron deposition (PED) with glancing angle deposition (GLAD) techniques. The X-ray diffraction patterns and Raman spectra indicated that the fabricated TiO2 thin films were formed in anatase phases with crystallite sizes of around 20.3 nm. By using the GLAD techniques, the surface morphology and optical properties of TiO2 thin films were well controlled. In particular, the rod-like nanoparticles were probably raised up and the smoothness of the thin films was reduced when incident angles increased from 0º to 70º, which resulted from the self-shadowing mechanism. The absorption coefficient was reduced, the energy band gap increased, and the Raman peaks at 144 cm-1 were vanished with increasing in incident angles in part due to changes in the thin film porosity and the crystallite sizes, which is proportional to the number of self-shadowed induced voiding sites. Furthermore, the non-enzymatic fluorescent glucose sensor using the PED-based TiO2 thin films was demonstrated to explore the application potential of the fabricated materials.

Downloads

Download data is not yet available.

References

1. Hashimoto K., Irie H., and Fujishima A. - TiO2 Photocatalysis: A Historical Overview and Future Prospects, Jpn. J. Appl. Phys. 12 (2005) 8269. DOI:10.1143/JJAP.44.8269

2. Guo Q., Zhou C., Ma Z., and Yang X. - Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges, Adv. Mater. 31 (2019) 1901997. DOI:10.1002/ adma.201901997

3. Dao Q. D., Fujii A., Tsuji R., and Ozaki M. - Highly efficient perovskite solar cell utilizing a solution-processable tetrabenzoporphyrin hole transport material with p-type dopants, Appl. Phys. Express 12 (2019) 112009. DOI: 10.7567/1882-0786/ab4aa2

4. Homola T., Pospisil J., Shekargoftar M., Svoboda T., Hvojnik M., Gemeiner P., Weiter M., and Dzik P. - Perovskite Solar Cells with Low-Cost TiO2 Mesoporous Photoanodes Prepared by Rapid Low-Temperature (70 °C) Plasma Processing, ACS Appl. Energy Mater. 3 (2020) 12009. DOI:10.1021/acsaem.0c02144

5. Dao Q.-D., Tsuji R., Fujii A., and Ozaki M. - Study on degradation mechanism of perovskite solar cell and their recovering effects by introducing CH3NH3I layers, Org. Electron. 43 (2017) 229. DOI:10.1016/j.orgel.2017.01.038

6. El-Deen S. S., Hashem A. M., Abdel Ghany A. E., Indris S., Ehrenberg H., Mauger A., and Julie C. M. - Anatase TiO2 nanoparticles for lithium-ion batteries, Ionics 24 (2018) 2925. DOI:10.1007/s11581-017-2425-y

7. Khatim O., Amamra M., Chhor K., Bell A.M.T., Novikov D., Vrel D., and Kanaev A. - Amorphous–anatase phase transition in single immobilized TiO2 nanoparticles, Chem. Phys. Lett. 558 (2013) 53. DOI:10.1016/j.cplett.2012.12.019

8. Li Z., Cong S., and Xu Y. - Brookite vs Anatase TiO2 in the Photocatalytic Activity for Organic Degradation in Water, ACS Catal. 4 (2014) 3273. DOI:10.1021/cs500785z

9. Luttrell T., Halpegamage S., Tao J., Kramer A., Sutter E., and Batzill M. - Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films, Sci Rep 4 (2014) 4043. DOI: 10.1038/srep04043

10. Regraguy B., Rahmani M., Mabrouki J., Drhimer F., Ellouzi I., Mahmou C., Dahchour A., Mrabet M. E., and Hajjaji S. E. - Photocatalytic degradation of methyl orange in the presence of nanoparticles NiSO4/TiO2, Nanotechnol. Environ. Eng. 7 (2022) 157. DOI:10.1007/s41204-021-00206-0.

11. Lee S. Y., Kang D., Jeong S., Do H. T., and Kim J. H. - Photocatalytic Degradation of Rhodamine B Dye by TiO2 and Gold Nanoparticles Supported on a Floating Porous Polydimethylsiloxane Sponge under Ultraviolet and Visible Light Irradiation, ACS Omega 5 (2020) 4233. DOI:10.1021/acsomega.9b04127

12. Suligoj A., Kete M., Cernigoj U., Fresno F., and Stangar U. L. - Synergism in TiO2 photocatalytic ozonation for the removal of dichloroacetic acid and thiacloprid, Environ. Res. 197 (2021) 110982. DOI:10.1016/j.envres.2021.110982

13. Tan S., Feng H., Ji Y., Wang Y., Zhao J., Zhao A., Wang B., Luo Y., Yang J., and Hou J. G. - Observation of Photocatalytic Dissociation of Water on Terminal Ti Sites of TiO2(110)-1 × 1 Surface, J. Am. Chem. Soc. 134 (2012) 9978. DOI:10.1021/ja211919k

14. Grochowska K., Ryl J., Karczewski J., Śliwiński G., Cenian A., and Siuzdak K. J. - Non-enzymatic flexible glucose sensing platform based on nanostructured TiO2/Au composite, J. Electroanalytical Chem. 837 (2019) 230. DOI:10.1016/j.jelechem.2019.02.040

15. Jeong H., Yoo J., Park S., Lu J., Park S., and Lee J. - Non-Enzymatic Glucose Biosensor Based on Highly Pure TiO2 Nanoparticles, Biosensors 11 (2021) 149. DOI:10.3390/bios11050149

16. Dao Q. D., Fujii A., Tsuji R., and Ozaki M. - A study on solution-processable tetrabenzomonoazaporphyrin hole transport material for pervoskite solar cells, Adv. Nat. Sci.: Nanosci. Nanotechnol. 11 (2020) 015007. DOI:10.1088/2043-6254/ab6c4d

17. Xu Y., Gao C., Tang S., Zhang J., Chen Y., Zhu Y., and Hu Z. - Comprehensive understanding of TiCl4 treatment on the compact TiO2 layer in planar perovskite solar cells with efficiencies over 20%, J. of Alloys Compd. 787 (2019) 1082. DOI:10.1016/j.jallcom.2019.02.027

18. Murakami T. N., Miyadera T., Funaki T., Cojocaru L., Kazaoui S., Chikamatsu M., and Segawa H. - Adjustment of Conduction Band Edge of Compact TiO2 Layer in Perovskite Solar Cells Through TiCl4 Treatment, ACS Appl. Mater. Interfaces 9 (2017) 36708. DOI:10.1021/acsami.7b07496

19. Dao Q. D., Fujii A., Tsuji R., Takeoka Y., and Ozaki M. - Efficiency enhancement in perovskite solar cell utilizing solution-processable phthalocyanine hole transport layer with thermal annealing, Org. Electron. 43 (2017) 156. DOI:10.1016/j.orgel.2017.01.027

20. Cargnello M., Gordon T. R., and Murray C. B. - Solution-Phase Synthesis of Titanium Dioxide Nanoparticles and Nanocrystals, Chem. Rev. 114 (2014) 9319. DOI:10.1021/ cr500170p

21. Pradhan S. K., Reucroft P. J., Yang F., and Dozier A. - Growth of TiO2 nanorods by metalorganic chemical vapor deposition, J. Cryst. Growth 256 (2003) 83. DOI:10.1016/S0022-0248(03)01339-3

22. Kumi-Barimah E., Penhale-Jones R., Salimian A., Upadhyaya H., Hasnath A., and Jose G. - Phase evolution, morphological, optical and electrical properties of femtosecond pulsed laser deposited TiO2 thin films, Sci. Rep. 10 (2020) 10144. DOI:10.1038/s41598-020-67367-x

23. Lee S. W., Bae S., Cho K., Kim S., Hwang J. K., Lee W., Lee S., Hyun J. Y., Lee S., Choi S. B., Chun H., Kim W. M., Kang Y., Lee H. S., and Kim D. - Sputtering of TiO2 for High-Efficiency Perovskite and 23.1% Perovskite/Silicon 4-Terminal Tandem Solar Cells, ACS Appl. Energy Mater. 2 (2019) 6263. DOI:10.1021/acsaem.9b00801

24. Sanz M., Walczak M., Oujja M., Cuesta A., and Castillejo M. - Nanosecond pulsed laser deposition of TiO2: nanostructure and morphology of deposits and plasma diagnosis, Thin Solid Films 517 (2009) 6546. DOI:10.1016/j.tsf.2009.04.026

25. Walczak M., Papadopoulou E. L., Sanz M., Manousaki A., Marco J. F., and Castillejo M. - Structural and morphological characterization of TiO2 nanostructured films grown by nanosecond pulsed laser deposition, Appl. Surf. Sci. 255 (2009) 5267. DOI:10.1016/j.apsusc.2008.07.098

26. Walczak M., Oujja M., Marco J. F., Sanz M., and Castillejo M. - Pulsed laser deposition of TiO2: diagnostic of the plume and characterization of nanostructured deposits, Appl Phys A 93 (2008) 735. DOI:10.1007/s00339-008-4704-y

27. Xie Z., Zhao F., Zou S., Zhu F., Wang W., and Zhang Z. - TiO2 nanorod arrays decorated with Au nanoparticles as sensitive and recyclable SERS substrates, J. Alloys Compd. 861 (2021) 157999. DOI:10.1016/j.jallcom.2020.157999

28. Zhou Q., He Y., Abell J., Zhang Z., and Zhao Y. - Surface-enhanced Raman scattering from helical silver nanorod arrays Chem. Commun. 47 ( 2011) 4466. DOI:10.1039/ C0CC05465H

29. Vick D., Friedrich L. J., Dew S. K., Brett M. J., Robbie K., Seto M., and Smy T. - Self-shadowing and surface diffusion effects in obliquely deposited thin films, Thin Solid Films 339 (1999) 88. DOI:10.1016/S0040-6090(98)01154-7

30. Praveen P., Viruthagiri G., Mugundan S., and Shanmugam N. - Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles – Synthesized via sol–gel route, Spectrochim. Acta A 117 (2014) 622. DOI:10.1016/j.saa.2013.09.037

31. Dao Q. D., Fujii A., Tsuji R., Pham N. H., Bui H. V., Sai C. D., Nguyen D. T., Vu T. H., and Ozaki M. - Mesoporous TiO2 electron transport layer engineering for efficient inorganic-organic hybrid perovskite solar cells using hydrochloric acid treatment, Thin Solid Films 732 (2021) 138768. DOI:10.1016/j.tsf.2021.138768

32. Ranga Rao A., and Dutta V. - Low-temperature synthesis of TiO2 nanoparticles and preparation of TiO2 thin films by spray deposition, Sol. Energy Mater Sol. Cells 91 (2007) 1075. DOI:10.1016/j.solmat.2007.03.001

33. Kathiravan A., and Renganathan R. - Photosensitization of colloidal TiO2 nanoparticles with phycocyanin pigment, J. Colloid Interface Sci 335 (2009) 196. DOI:10.1016/ j.jcis.2009.03.076

34. Shown I., Ujihara M., and Imae T. - Sensitizing of pyrene fluorescence by β-cyclodextrin-modified TiO2 nanoparticles, J. Colloid Interface Sci 352 (2010) 232. DOI:10.1016/ j.jcis.2010.08.055

35. Parayil S. K., Kibombo H. S., Wu C. M., Peng R., Baltrusaitis J., and Koodali R. T. - Enhanced photocatalytic water splitting activity of carbon-modified TiO2 composite materials synthesized by a green synthetic approach, Int. J. Hydrogen Energy 37 (2012) 8257. DOI:10.1016/j.ijhydene.2012.02.067

36. Pooja P., and Chinnamuthu P. - Annealing Effect of Glancing Angle Electron Beam Deposited TiO2/In2O3 Nanowires Array on Surface Wettability, Sci. Rep. 10 (2020) 9416. DOI: 10.1038/s41598-020-66150-2

37. Sanchez-Valencia J. R., Longtin R., Rossell M. D., and Groening P. - Growth assisted by glancing angle deposition: a new technique to fabricate highly porous anisotropic thin films, ACS Appl. Mater. Interfaces 8 (2016) 8686. DOI:10.1021/acsami.6b00232

38. Lagopati N., Tsilibary E. P., Falaras P., Papazafiri P., Pavlatou E. A., Kotsopoulou E., and Kitsiou P. - Effect of nanostructured TiO2 crystal phase on photoinduced apoptosis of breast cancer epithelial cells, Int J Nanomedicine 9 (2014) 3219. DOI:10.2147/IJN. S62972

39. Cui L., Wang W. - Optical properties of anatase and rutile TiO2 films deposited by using a pulsed laser, Appl. Opt. 60 (2021) 8453. DOI:10.1364/AO.437646

40. Pyun M. W., Kim E. J., Yoo D. H., and Hahn S. H. - Oblique angle deposition of TiO2 thin films prepared by electron-beam evaporation, Appl. Surf. Sci. 257 (2010) 1149. DOI:10.1016/j.apsusc.2010.08.038

41. Sodzel D., Khranovskyy V., Beni V., Turner A. P. F., Viter R., Eriksson M. O., Holtz P.-O., Janot J. M., Bechelany M., Balme S., Smyntyna V., Kolesneva E., Dubovskaya L., Volotovski I., Ubelis A., and Yakimova R. - Continuous sensing of hydrogen peroxide and glucose via quenching of the UV and visible luminescence of ZnO nanoparticles, Microchim Acta 182 (2015) 1819. DOI:10.1007/s00604-015-1493-9

Downloads

Published

28-04-2025

How to Cite

[1]
D. Dao Quang, “Fabrication and characterization of pulsed electron beam deposited TiO2 thin films with glancing angle deposition techniques for biosensing application”, Vietnam J. Sci. Technol., vol. 63, no. 2, pp. 285–296, Apr. 2025.

Issue

Section

Materials

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.