Correlation between electrical properties and critical behavior in La₀.₇Ca₀.₂₅Ag₀.₀₅MnO₃ nanoparticles
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/18110Keywords:
Nanoparticles, Manganites, Critical behavior, ResistivityAbstract
In this study, we investigated the critical behavior of La₀.₇Ca₀.₂₅Ag₀.₀₅MnO₃ nanoparticles by analyzing temperature-dependent resistivity data and systematic magnetization measurements performed under an applied magnetic field of 3 T. The critical exponents extracted from the resistivity scaling near the ferromagnetic–paramagnetic transition, β = 0.676 and γ = 0.734, closely match those obtained from the Modified Arrott plot method, demonstrating good internal consistency between electrical transport and magnetic characterization approaches. To further assess the reliability and universality of the extracted exponents, the Widom scaling relation was employed, alongside a detailed examination of the magnetization scaling equations. Both analyses confirmed that the critical behavior satisfies the expected scaling constraints over a broad temperature and field range. The convergence of these independent methods provides strong evidence that long-range dipole–dipole interactions play a dominant role in governing the magnetic phase transition of La₀.₇Ca₀.₂₅Ag₀.₀₅MnO₃ nanoparticles, offering deeper insight into the mechanisms controlling their magnetic and transport properties.Downloads
References
1. Yang S. A., Chen Q. M., Hu J., Yang Y. R., Gao Y., Xu R. D., Zhang H., Ma J. - Robust temperature coefficient of resistance of polycrystalline La0.6Ca0.4MnO3 under magnetic fields at room temperature, Ceram. Int. 47 (2021) 29631-29637. https://doi.org/10.1016/ j.ceramint.2021.07.132
2. Hemberger J., Brando M., Wehn R., Yu V., Ivanov A., Mukhin A., Balbashov A. M., Loidl A. - Magnetic properties and specific heat of RMnO3 (R = Pr, Nd), Phys. Rev. B 69 (2004) 064418. https://doi.org/10.1103/PhysRevB.69.064418
3. Salamon M. B., Jaime M. - The physics of manganites: structure and transport, Rev. Mod. Phys. 73 (2001) 583-628. https://doi.org/10.1103/RevModPhys.73.583
4. Kouvel J. S. and Fisher M. E. - Detailed Magnetic Behavior of Nickel Near its Curie Point, Phys. Rev. 136 (1964) A1626. https://doi.org/10.1103/PhysRev.136.A1626
5. Fisher M. E., Ma S. K., Nickel B. - Critical Exponents for Long-Range Interactions, Phys. Rev. Lett. 29 (1972) 917. https://doi.org/10.1103/PhysRevLett.29.917
6. Fisher M. E., Langer J. S. - Resistive anomalies at magnetic critical points, Phys. Rev. Lett. 20 (1968)665. https://doi.org/10.1103/PhysRevLett.20.665
7. Suezaki Y., Mori Y. - Dynamic critical phenomena in magnetic systems. II: Electrical resistivity near the Néel point, Prog. Theor. Phys. 41(1969) 1177-1189. https://doi.org/ 10.1143/PTP.41.1177
8. Khelifi J., Dhahri E., Hlil E. K. - Correlation between electrical, magnetocaloric properties and criticalbehavior in (La0.75Nd0.25)2/3(Ca0.8Sr0.2)1/3MnO3. Solid State Commun, 249 (2017) 19-23. http://dx.doi.org/10.1016/j.ssc.2016.10.010
9. Mnefgui S., Hassine A. B., Bouazizi M. L., Dhahri A. - Critical Behavior and Its Correlation with Magneto‑Electrical Properties in La0.47Ln0.2Pb0.33MnO3 (Ln =Y and Eu) Polycrystalline. J. Low Temp. Phys. 201 (2020) 500-514. https://doi.org/10.1007/s10909-020-02520-4
10. Dey P. and Nath T. K. - Effect of grain size modulation on the magneto- and electronic-transport properties of La0.7Ca0.3MnO3 nanoparticles: The role of spinpolarized tunneling at the enhanced grain surface, Phys. Rev. B 73 (2006) 214425. https://doi.org/ 10.1103/PhysRevB.73.214425
11. Manh D. H., Phong P. T., Thanh T. D., Nam D. N. H., Hong L. V., Phuc N. X. - Size effects and interactions in La0.7Ca0.3MnO3 nanoparticles, J. Alloys Compd. 509 (2011) 1373-1377. https://doi.org/10.1016/j.jallcom.2010.10.104
12. Navin K., Kurchania R. - The effect of particle size on structural, magnetic and transport properties of La0.7Sr0.3MnO3 nanoparticles, Ceram. Inter. 44 (2018) 4973-4980. Doi: https://doi.org/10.1016/j.ceramint.2017.12.091
13. Manh D. H., Phong P. T., Thanh T. D., Hong L.V., Phuc N. X. - La0.7Ca0.3MnO3 perovskite synthesized by reactive milling method: The effect of particle size on the magnetic and electrical properties, J. Alloys Compd. 491 (2010) 8-12. https://doi.org/ 10.1016/j.jallcom.2009.10.164
14. Qing X., Li H., Zhong C., Zhou P., Dong Z., Liu J. - Magnetism and spin exchange coupling in strained monolayer CrOCl, Phys. Chem. Chem. Phys. 22 (2020) 17255-17262. https://doi.org/10.1039/D0CP01160F
15. Kar M., Ravi S. - Electrical resistivity and ac susceptibility studies in La1-xAgxMnO3. Mater. Sci. Eng. B 110 (2004) 46-51. https://doi.org/10.1016/j.mseb.2004.02.009
16. Xia W., Leng K., Tang Q., Yang L., Xie Y., Wu Z., Zhu X. - Comparative studies on the structural, magnetic, and optical propertiesof perovskite Ln0.67Ca0.33MnO3 (Ln = La, Pr, Nd, and Sm) manganite nanoparticles synthesized by sol-gel method, AIP Advances 11 (2021) 035007. https://doi.org/10.1063/5.0036723
17. Boora N., Ahmad R., Rani P., Maheshwari P. K., Khosla A., Bansal S., Awana V. P. S., Hafiz A. K. - Room Temperature Synthesis of Colossal Magneto-Resistance of La2/3Ca1/3MnO3: Ag0.10 Composite, ECS J. Solid State Sci. Tech. 10 (2021) 027006. https://doi.org/10.1149/2162-8777/abe58d
18. Battabyal M., Dey T. K. - Solid State Commun. 134 (2005) 837. https://doi.org/ 10.1016/j.ssc.2005.01.023
19. Pi L., Hervieu M., Maignan A., Martin C., Raveau B. - Structural and magnetic phase diagram and room temperature CMR effect of La1−xAgxMnO3, Solid State Commun. 126 (2003) 229. Doi: https://doi.org/10.1016/S0038-1098(02)00890-6
20. Williamson G. K., Hall W. H. - X-ray line broadening from filed aluminum and wolfram. Acta Metall. 1 (1953) 22. https://doi.org/10.1016/0001-6160(53)90006-6
21. Geldart D. J. W. and Richard T. G. - Theory of spin-fluctuation resistivity near the critical point of ferromagnets, Phys. Rev. B 12 (1975) 5175. https://doi.org/ 10.1103/PhysRevB.12.5175
22. Skini R., Baaziz H., Tozri A., Abdel-Hafez M., Hassan A. - Magnetocaloric effect and critical behavior in La0.8K0.2MnO3 nanoparticle, Results in Physics 30 (2021) 104861. Doi: https://doi.org/10.1016/j.rinp.2021.104861
23. Tozri A., Dhahri E., Hlil E. K. - Impact of vacancy and Na substitutions on the critical magnetic behavior in polycrystalline La0.8Pb0.2MnO3, Phys. Lett. A 375 (2011) 1528-1533. https://doi.org/10.1016/j.physleta.2011.02.038
24. Arrott A., Noakes J.E. - Approximate Equation of State For Nickel Near its Critical Temperature, Phys. Rev. Lett. 19 (1967) 786-789. https://doi.org/10.1103/ PhysRevLett.19.786
25. Stanley H. E. - Scaling, universality, and renormalization: Three pillars of modern critical phenomena, Rev. Mod. Phys. 71 (1999) S358. https://doi.org/10.1103/ RevModPhys.71.S358
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.
