Combining fuzzy probability and fuzzy clustering for multispectral satellite imagery classification
Author affiliations
DOI:
https://doi.org/10.15625/0866-708X/54/3/6463Keywords:
Satellite Imagery, Probability, fuzzy c-means clusteringAbstract
This paper proposes a method of combining fuzzy probability and fuzzy clustering algorithm to classify on multispectral satellite images by relying on fuzzy probability to calculate the number of clusters and the centroid of clusters then using fuzzy clustering to classifying land-cover on the satellite image. In fact, the classification algorithms, the initialization of the clusters and the initial centroid of clusters have great influence on the stability of the algorithms, dealing time and classification results; the unsupervised classification algorithms such as k-Means, c-Means, Iso-data are used quite common for many problems, but the disadvantages is the low accuracy and unstable, especially when dealing with the problems on the satellite image. Results of the algorithm which are proposed show significant reduction of noise in the clusters and comparison with various clustering algorithms like k-means, iso-data, so on.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.