Immune response against gastrointestinal nematodes and the potential application of immortalized cell lines in the sheep industry

Author affiliations

Authors

DOI:

https://doi.org/10.15625/2525-2518/19533

Keywords:

Mast cells, sheep, gastrointestinal nematode, immortalized cell lines

Abstract

The world's sheep industry faces significant health challenges due to endoparasite infections. One effective management approach to control these parasites is through the activation of the host's immune system. Vaccination emerges as a potential method to control gastrointestinal nematode (GIN) parasites while addressing the need for animal food products devoid of harmful chemicals. However, the development of an efficient anti-parasite vaccine requires a comprehensive understanding of the immune responses elicited by the sheep to control GIN infection. Mast cells, recognized as tissue-resident immune cells primarily involved in IgE-mediated immune responses, play a pivotal role in both innate and adaptive immunity. Based on their location and function, mast cells are classified into tissue and mucosal mast cells and play an important role in defending the host against specific pathogens. Mucosal mast cells, located in the body's mucosal surfaces, are capable of initiating early immune responses against bacterial and viral infection, thereby contributing to effective immunity in animals. Advancing our knowledge about mast cell biology through the successful culturing of mast cell lines holds great promise for the sheep industry. It may lead to the development of targeted vaccines that can further improve the productivity, welfare, and economic sustainability of the sheep industry. In this paper, we review the effective immune responses employed by sheep to combat GIN infections and highlight the crucial roles of mast cells in establishing host immune responses to eliminate GIN.

Downloads

Download data is not yet available.

References

1. Petek B. and Marinšek L. - Management of waste sheep wool as valuable organic substrate in European Union countries, J. Mater. Cycles Waste Manag. 23 (5) (2020) 44-54. https://doi.org/10.1007/s10163-020-01121-3.

2. Gowane G. R., Gadeka Y. P., Prakash, Kadam V., Chopra A. and Prince L. L. L. - Climate Change Impact on Sheep Production: Growth, Milk, Wool, and Meat in Sheep Production Adapting to Climate Change, Springer Singapore, 2017, pp. 31-69. https://doi.org/10.1007/978-981-10-4714-5_2

3. Jack A. A., Adegbeye M. J ., Reddy P. R. K., Elghandour M. M. M. Y., Salem A. Z. M. and Adewumi M. K. - Ruminant Productivity Among Smallholders in a Changing Climate: Adaptation Strategies, in Handbook of Climate Change Mitigation and Adaptation, Springer International Publishing, 2022, pp. 3047-3086. https://doi.org/10.1007/978-3-030-72579-2_148.

4. Tilman D., Cassman K., Matson A. P., Naylor R. and Polasky S. - Agricultural sustainability and intensive production practices. Nature. 418 (6898) (2002) 671-677. https://doi.org/10.1038/nature01014.

5. McLeod K. R., Harmon D. L., Schillo K. K. and Mitchell G. E. - Cysteamine-induced depletion of somatostatin in sheep: time course of depletion and changes in plasma metabolites, insulin, and growth hormone.J. Anim. Sci. 73 (1) (1995) 77. https://doi.org/10.2527/1995.73177x.

6. Gao B., Jeong W. I. and Tian Z. - Liver: An organ with predominant innate immunity. Hepatology. 47 (2) (2008) 729-736. DOI: 10.1002/hep.22034.

7. McRae K. M., Stear M. J., Good B. and Keane O. M. - The host immune response to gastrointestinal nematode infection in sheep. Parasite Immunol. 37 (12) (2015) 605-613. https://doi.org/10.1111/pim.12290.

8. Holt P. G. - Primary allergic sensitization to environmental antigens: perinatal T cell priming as a determinant of responder phenotype in adulthood. JEM. 183 (4) (1996) 1297-1301. doi: 10.1084/jem.183.4.1297.

9. Hoste H., Campos G. M., Marchand S., Sotiraki S., Sarasti K., Blomstrand B. M., Williams A. R., Thamsborg S. M., Athanasiadou S., Enemark H. L., Acosta G. F. T., Mancilla-Montelongo G., Castro C. S., Costa-Junior L. M., Louvandini H., Sousa D. M., Salminen J. P., Karonen M., Engstrom M., Charlier J., Niderkorn V. and Morgan E. R. - Use of agro-industrial by-products containing tannins for the integrated control of gastrointestinal nematodes in ruminants. Parasite (Paris, France). 29 (2022) 10-10. DOI: 10.1051/parasite/2022010.

10. Kyriazakis I., Anderson D. H., and Duncan A. J. - Conditioned flavour aversions in sheep: the relationship between the dose rate of a secondary plant compound and the acquisition and persistence of aversions. Br. J. Nutr. 79 (1) (1998) 55-62. https://doi.org/10.1079/BJN19980009.

11. Samantha A. and Vrielink A. - Lipid A phosphoethanolamine transferase: regulation, structure and immune response. J. Mol. Biol. 432 (18) (2020) 5184-5196. https://doi.org/10.1016/j.jmb.2020.04.022.

12. Pernthaner A., Cole S. A., Morrison L., Green R., Richard J. S. and Wayne R. H. - Cytokine and antibody subclass responses in the intestinal lymph of sheep during repeated experimental infections with the nematode parasite Trichostrongylus colubriformis. Vet. immunol. immunopathol. 114 (1-2) (2006) 135-148. https://doi.org/10.1016/ j.vetimm.2006.08.004.

13. Zaros L. G., Neves M. R. M., Benvenuti C. L., Navarro A. M. C., Sider L. H., Coutinho L. L. and Vieira L. S. - Response of resistant and susceptible Brazilian Somalis crossbreed sheep naturally infected by Haemonchus contortus. Parasitol. Res. 113 (3) (2014) 1155-1161. https://doi.org/10.1007/s00436-014-3753-8.

14. Escribano C., Saravia A., Costa M., Castells D., Ciappesoni G., Riet-Correa F. and Teresa Freire. - Resistance to Haemonchus contortus in Corriedale sheep is associated to high parasite-specific IgA titer and a systemic Th2 immune response. Sci. Rep. 9 (1) (2019) 19579-19579. https://doi.org/10.1038/s41598-019-55447-6.

15. Lins J. G. G., Fabiana A., Ana Cláudia A., Britton C. and Amarante F. T. - Early-onset immune response to Haemonchus contortus infection in resistant Santa Ines suckling lambs compared with susceptible. France. Vet. Parasitol. 307-308 (2022) 109734. https://doi.org/10.1016/j.vetpar.2022.109734.

16. Sato A. - Tuft cells. Anato Sci Int. 82 (2007) 187-199. https://doi.org/10.1111/j.1447-073X.2007.00188.x

17. Gerbe F., Legraverend C. and Jay P. - The intestinal epithelium tuft cells: specification and function. Cell. Mol. Life Sci. 69 (17) (2012) 2907-2917. https://doi.org/ 10.1007/s00018-012-0984-7

18. Allen J. E. and Sutherland T. E. - Host protective roles of type 2 immunity: parasite killing and tissue repair, flip sides of the same coin in Seminars in immunology. Elsevier. (2014) https://doi.org/10.1016/j.smim.2014.06.003

19. Wang W., Yuan C., Wang X., Song X. and Xu L. - Transcriptional and proteomic analysis reveal recombinant galectins of Haemonchus contortus down-regulated functions of goat PBMC and modulation of several signaling cascades in vitro. J Proteomics. 98 (2014) 123-137. https://doi.org/10.1016/j.jprot.2013.12.017.

20. Hendel S.K., Kellermann1 L., Hausmann A., Bindslev N., Jensen K. B., and Nielsen O. H. - Tuft Cells and Their Role in Intestinal Diseases. Front. immunol. 13 (2022) 822867-822867. https://doi.org/10.3389/fimmu.2022.822867.

21. Michel O., Kips J., Duchateau J., Vertongen F., Robert L., Collet H., Pauwels R. and Sergysels R. - Severity of asthma is related to endotoxin in house dust. American Journal of Respiratory and Crit. Care Med. 154 (6) (1996) 1641-1646. https://doi.org/10.1164/ajrccm.154.6.8970348.

22. Barker I. - Intestinal pathology associated with Trichostrongylus colubriformis infection in sheep: histology. Pa. 70 (2) (1975) 165-171. https://doi.org/10.1017/ S0031182000049623.

23. Andronicos N., Hunt P. and Windon R. - Expression of genes in gastrointestinal and lymphatic tissues during parasite infection in sheep genetically resistant or susceptible to Trichostrongylus colubriformis and Haemonchus contortus. Int. J. Parasitol. 40 (4) (2010) 417-429. https://doi.org/10.1016/j.ijpara.2009.09.007.

24. Oliphant C. J., Barlow J. L., and McKenzie A. N. J. - Insights into the initiation of type 2 immune responses, Immunology 134 (4) (2011) 378-385. https://doi.org/10.1111/j.1365-2567.2011.03499.x

25. Chaplin D. D. - Overview of the immune response, JACI. 125 (2 Suppl 2) (2010) S3-S23.

26. Shokal U. and Eleftherianos I. - Evolution and Function of Thioester-Containing Proteins and the Complement System in the Innate Immune Response. Front. immunol. 8 (2017) DOI: 10.3389/fimmu.2017.00759

27. Carroll M. C. and Isenman D. E. - Regulation of humoral immunity by complement. Immunity. 37 (2) (2012) 199-207. DOI: 10.1016/j.immuni.2012.08.002

28. Gill H. S., Doull F., Rutherfurd K. J. and Cross M. L. - Immunoregulatory peptides in bovine milk. Br. J. Nutr. 84 (S1) (2000) 111-117. https://doi.org/10.1017/S0007114500002336

29. Tritten L., Tam M., Vargas M., Jardim A., Stevenson M., Keiser J. and Timothy G. Excretory/secretory products from the gastrointestinal nematode Trichuris muris. Exp Parasitol. 178 (2017) 30-36. https://doi.org/10.1016/j.exppara.2017.05.003

30. Li Y., Wang W., Yang F., Xu Y., Feng C. and Zhao Y. - The regulatory roles of neutrophils in adaptive immunity. CCS. 17 (1) (2019) 147-147. https://doi.org/10.1186/s12964-019-0471-y

31. Ehsan M., Wang W., Gadahi J. A., Hasan M. W., Lu M., Wang Y., Liu X., Haseeb M., Yan R., Xu L., Song X. and Li X. - The serine/threonine-protein phosphatase 1 from Haemonchus contortus is actively involved in suppressive regulatory roles on immune functions of goat peripheral blood mononuclear cells. Front. immunol. 9 (2018) 1627. DOI: 10.3389/fimmu.2018.01627

32. Wen Y., Wang J., Wang W., Lu M., Ehsan M., Tian X., Yan R., Song X., Xu L. and Li X. - Recombinant Miro domain-containing protein of Haemonchus contortus (rMiro-1) activates goat peripheral blood mononuclear cells in vitro. Vet. Parasitol. 243 (2017) 100-104. https://doi.org/10.1016/j.vetpar.2017.06.018

33. McClure S. J., Emery D. L., Wagland B. M. and Jones W. O. - A serial study of rejection of Trichostrongylus colubriformis by immune sheep. Int. J. Parasitol. 22 (2) (1992) 227-234. https://doi.org/10.1016/0020-7519(92)90106-U

34. Shanker A. - Adaptive control of innate immunity. Immunol. Lett. 131 (2) (2010) 107-112. https://doi.org/10.1016/j.imlet.2010.04.002

35. Medzhitov R. and Janeway C. A. - Innate Immune Induction of the Adaptive Immune Response. Cold Spring Harb. Symp. Quant. 64 (0) (1999) 429-436. DOI:10.1101/sqb.1999.64.429

36. Redpath S. A., Fonseca N. M. and Perona‐Wright G. - Protection and pathology during parasite infection: IL10 strikes the balance. Parasite Immunol. 36 (6) (2014) 233-252. https://doi.org/10.1111/pim.12113

37. Marshall J. S. - Mast-cell responses to pathogens. Nat. Rev. Immunol. 4 (10) (2004) 787-799. https://doi.org/10.1038/nri1460

38. Mosmann T. R. and Sad S. - The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol. Today. 17 (3) (1996) 138-146.

39. Urb M. and Sheppard D. C. - The role of mast cells in the defence against pathogens. PLoS pathogens. 8 (4) (2012) e1002619-e1002619. https://doi.org/10.1371/ journal.ppat.1002619

40. Abraham S. N. and John A. L. St. - Mast cell-orchestrated immunity to pathogens. Nat. Rev. Immunol. 10 (6) (2010) 440-452. https://doi.org/10.1038/nri2782

41. Espinosa-Riquer Z. P., Villalobos D. S., Ramírez-Moreno I. G., Rodríguez M. J. P., Lamas M. and Gonzalez-Espinosa C. - Signal Transduction Pathways Activated by Innate Immunity in Mast Cells: Translating Sensing of Changes into Specific Responses. Cells. 9 (11) (2020) 2411. https://doi.org/10.3390/cells9112411

42. Lacroux C., Nguyen T. H. C., Andreoletti O., Prevot F., Grisez C., Gruner L., Brunel J. C., Francois D., Bergeaud J. P., Dorchies P. and Jacquiet P. - Haemonchus contortus (Nematoda: Trichostrongylidae) infection in lambs elicits an unequivocal Th2 immune response. Vet. Res. 37 (4) (2006) 607-622. DOI : 10.1051/vetres:2006022

43. Miller R. A. - The Aging Immune System: Primer and Prospectus. Science. 273 (5271) (1996) 70-74. DOI: 10.1126/science.273.5271.70

44. Azam S.-U. - Hypersensitivity, immunity and Haemonchus contortus in sheep. Monash University. (2016)

45. Hendawy S. H. M. - Immunity to gastrointestinal nematodes in ruminants: effector cell mechanisms and cytokines. J. Parasit. Dis. 42 (4) (2018) 471-482. https://doi.org/10.1007/s12639-018-1023-x

46. González-Garduño R., Arece-García J. and Torres-Hernández G. - Physiological, immunological and genetic factors in the resistance and susceptibility to gastrointestinal nematodes of sheep in the peripartum period: A Review. Helm. 58 (2) (2021) 134-151. https://doi.org/10.2478/helm-2021-0020

47. Couper K. N., Barnes T., Hafalla J. C. R., Combes V., Ryffel R., Secher T., Grau G. E., Riley E. M. and Souza J. B. - Parasite-derived plasma microparticles contribute significantly to malaria infection-induced inflammation through potent macrophage stimulation. PLoS pathogens. 6 (1) (2010) e1000744. https://doi.org/10.1371/ journal.ppat.1000744

48. Spaulding E., Fooksman D., Moore J. M., Saidi A., Feintuch C. M., Reizis B., Chorro L., Daily J. and Lauvau G. - STING-Licensed Macrophages Prime Type I IFN Production by Plasmacytoid Dendritic Cells in the Bone Marrow during Severe Plasmodium yoelii Malaria. PLoS pathogens. 12 (10) (2016) e1005975-e1005975. https://doi.org/10.1371/journal.ppat.1005975

49. Stutman O., Poggio T. V., Gutiérrez A, Mujica G., Araya D., Grizmado X., Calabro A., Crowley P., Arezo M., Seleiman M., Herrero E., Sepulveda L., Talmon G., Diaz O. and Larrieu E. - Natural Ctotoxic cells against solid tumors in mice: General Characteristics and comparison to natural killer cells 11, in Natural Cell-mediated Immunity Against Tumors. Elsevier (1980) 187-229.

50. Labanchi J. L., Figarella E. F., Paige C. J. and Lattime E. C. - Analysis of vaccination strategy against cystic echinococcosis developed in the Province of Río Negro, Argentina: 12 years of work. Vet. Parasitol. 310 (2022) 109790. https://doi.org/10.1016/j.vetpar.2022.109790

51. Bowdridge S. A., Zajac A. M., and Notter D. R. - Croix sheep produce a rapid and greater cellular immune response contributing to reduced establishment of Haemonchus contortus. Vet. Parasitol. 208 (3-4) (2015) 204-210. https://doi.org/10.1016/ j.vetpar.2015.01.019

52. Cruz-Tamayo A. A., López-Arellano M. E., Roberto G. G., Glafiro T. H., Alfonso M. V., Carlos B. P., Hernández-Mendo O., Ramírez-Bribiesca E. and Huchin-Cab M. - Haemonchus contortus infection induces a variable immune response in resistant and susceptible Pelibuey sheep. Vet. immunol. immunopathol. 234 ( 2021). https://doi.org/10.1016/j.vetimm.2021.110218

53. Weller P. F. and Spencer L. A. - Functions of tissue-resident eosinophils. Nat. Rev. Immunol 17 (12) (2017) 746-760. https://doi.org/10.1038/nri.2017.95

54. Coden M. E. and Berdnikovs S. - Eosinophils in wound healing and epithelial remodeling: Is coagulation a missing link? J. Leukoc. Biol. 108 (1) (2020) 93-103. https://doi.org/10.1002/JLB.3MR0120-390R

55. Balic A., Bowles V. M. and Meeusen E. N. - The immunobiology of gastrointestinal nematode infections in ruminants (2000).

56. Pleass R. and Woof J. - Fc receptors and immunity to parasites. Trends Parasitol. 17 (11) (2001) 545-551. DOI: 10.1016/S1471-4922(01)02086-4.

57. Motran C. C., Silvane L., Chiapello L. S., Theumer M. G, Ambrosio L. F., Volpini X., Celias D. P. and Cervi1 L. - Helminth Infections: Recognition and Modulation of the Immune Response by Innate Immune Cells. Front. immunol. 9 (2018) 664-664. https://doi.org/10.3389/fimmu.2018.00664.

58. Espinosa E. and Valitutti S. - New roles and controls of mast cells. CURR OPIN IMMUNOL. 50 (2018) 39-47. https://doi.org/10.1016/j.coi.2017.10.012.

59. Fettrelet T., Gigon L., Karaulov A., Yousefi S., and Simon H. U. - The Enigma of Eosinophil Degranulation. Int. J. Mol. Sci. 22 (13) (2021) 7091. https://doi.org/ 10.3390/ijms22137091

60. Breedveld A. and Egmond M. V - IgA and FcαRI: pathological roles and therapeutic opportunities. Front. immunol. 10 (2019) 553. https://doi.org/10.3389/fimmu.2019.00553.

61. Ravin K. A. and Loy M. - The Eosinophil in Infection. Clin Rev Allergy Immunol. 50 (2) (2015) 214-227. https://doi.org/10.1007/s12016-015-8525-4

62. Anwar A., McKean J. R., Smithers S.R. and Kay A. B. - Human eosinophil-and neutrophil mediated killing of schistosomula of Schistosoma mansoni in vitro. I. Enhancement of complement-dependent damage by mast cell-derived mediators and formyl methionyl peptides. (1980)

63. Duffus W. L. and Franks D. - In vitro effect of immune serum and bovine granulocytes on juvenile Fasciola hepatica. Clin Rev Allergy Immunol. 41 (3) (1980) 430.

64. Ortega-Pierres G., Muñiz E. and Coral-Vázquez R. - Preotection againstTrichinella spiralis induced by purified stage-specific surface antigens of infective larvae. Parasitol. Res. 75 (7) (1989) 563-567. https://doi.org/10.1007/BF00931167

65. Butterworth A. E., Wassom D. L., Gleich G. J., Loegering D. A. and David J. R. - Damage to schistosomula of Schistosoma mansoni induced directly by eosinophil major basic protein. J. Immun. 122 (1) (1979) 221-229. https://doi.org/ 10.4049/jimmunol.122.1.221

66. Butterworth A. E. - Cell-Mediated Damage to Helminths. Adv. Parasitol. Elsevier (1985) 143-235. https://doi.org/10.1016/S0065-308X(08)60287-0

67. McEwen B. J. - Eosinophils: A review. Vet Res Commun. 16 (1) (1992) 11-44. https://doi.org/10.1007/BF01839203.

68. Jenvey C. J., Alenizi D., Almasi F., Cairns C., Holmes A. and Sloan S. - Bioinformatic analysis of eosinophil activity and its implications for model and target species. Parasitology. 147 (4) (2020) 393-400. DOI:10.1017/S0031182019001768

69. Henderson N. G. and Stear M. J. - Eosinophil and IgA responses in sheep infected with Teladorsagia circumcincta. Vet. immunol. immunopathol. 112 (1-2) (2006) 62-66. https://doi.org/10.1016/j.vetimm.2006.03.012.

70. Meeusen E. N. T., Balic A. and Bowles V. - Cells, cytokines and other molecules associated with rejection of gastrointestinal nematode parasites. Vet. immunol. immunopathol. 108 (1-2) (2005) 121-125. https://doi.org/10.1016/j.vetimm.2005.07.002.

71. Falcone F. H., Pritchard D. I. and Gibbs B. F. - Do basophils play a role in immunity against parasites?, Trends Parasitol. 17 (3) (2001) 126-129. https://doi.org/10.1016/S1471-4922(00)01846-8.

72. Moon T. C., Befus A. D. and Kulka M. - Mast cell mediators: their differential release and the secretory pathways involved. Front. immunol. 5 (2014) 569-569. https://doi.org/10.3389/fimmu.2014.00569.

73. Rao K. N. and Brown M. A. - Mast Cells, Ann. N. Y. Acad. Sci. 1143 (1) (2008) 83-104. https://doi.org/10.1196/annals.1443.023.

74. Cardamone C., Parente R., De Feo G. and Triggiani M. - Mast cells as effector cells of innate immunity and regulators of adaptive immunity. Immunol. Lett. 178 (2016) 10-14. https://doi.org/10.1016/j.imlet.2016.07.003.

75. Greer A. W. and Hamie J. C. - Relative maturity and the development of immunity to gastrointestinal nematodes in sheep: an overlooked paradigm? Parasite Immunol. 38 (5) (2016) 263-272. https://doi.org/10.1111/pim.12313.

76. Echtenacher B., Männel D. N. and Hültner L. - Critical protective role of mast cells in a model of acute septic peritonitis. Nature. 381 (6577) (1996) 75-77. https://doi.org/10.1038/381075a0.

77. St John A. L., Rathore A. P. S. and Ginhoux F. - New perspectives on the origins and heterogeneity of mast cells. Nat. Rev. Immunol. 23 (1) (2022) 55-68. https://doi.org/10.1038/s41577-022-00731-2.

78. Mukai K., Tsai M., Saito H. and Galli S. J. - Mast cells as sources of cytokines, chemokines, and growth factors. Immunol. Rev. 282 (1) (2018) 121-150. https://doi.org/10.1111/imr.12634.

79. Akdis M., Aab A., Altunbulakli C., Azkur K., Costa R. A., Crameri R., Duan S., Eiwegger T., Eljaszewicz A., Ferstl R., Frei R., Garbani M., Globinska A., Hess L., Huitema C., Kubo T., Komlosi Z., Konieczna P., Kovacs N., Kucuksezer U. C., Meyer N., Morita H., Olzhausen J., O'Mahony L., Pezer M., Prati M., Rebane A., Rhyner C., Rinaldi A., Sokolowska M., Stanic B., Sugita K., Treis A., Van de Veen W., Wanke K., Wawrzyniak M., Wawrzyniak P., Wirz O. F., Zakzuk J. S. and Akdis C. A. - Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: Receptors, functions, and roles in diseases. J. Allergy Clin. Immunol. 138 (4) (2016) 984-1010. https://doi.org/10.1016/j.jaci.2016.06.033.

80. Wedemeyer J. and Galli S. J. - Mast cells and basophils in acquired immunity. Br. Med. Bull. 56 (4) (2000) 936-955. https://doi.org/10.1258/0007142001903616.

81. Galli S. J. and Tsai M. - IgE and mast cells in allergic disease. Nat. Med. 18 (5) (2012) 693-704. https://doi.org/10.1038/nm.2755.

82. Elieh Ali Komi D., Wöhrl S. and Bielory L. - Mast Cell Biology at Molecular Level: a Comprehensive Review. Clin. Rev. Allergy Immunol. 58 (3) (2019) 342-365. https://doi.org/10.1007/s12016-019-08769-2.

83. Williams C. M. M. and Galli S. J. - The diverse potential effector and immunoregulatory roles of mast cells in allergic disease. J. Allergy Clin. Immunol. 105 (5) (2000) 847-859. https://doi.org/10.1067/mai.2000.106485.

84. Stow J. L. and Murray R. Z. - Intracellular trafficking and secretion of inflammatory cytokines, Cytokine Growth Factor Rev. 24 (3) (2013) 227-239. https://doi.org/10.1016/j.cytogfr.2013.04.001.

85. Abdulkhaleq L. A., Assi M. A., Abdullah R., Zamri-Saad M., Taufiq-Yap Y. H. and Hezmee M. N. M. - The crucial roles of inflammatory mediators in inflammation: A review. Vet. World. 11 (5) (2018) 627. https://doi.org/10.14202/vetworld.2018.627-635.

86. Zwarthoff S. A., Berends E. T. M., Mol S., Ruyken M., Aerts P. C., Józsi M., De Haas C. J. C., Rooijakkers S. H. M. and Gorham R. D. J. - Functional Characterization of Alternative and Classical Pathway C3/C5 Convertase Activity and Inhibition Using Purified Models. Front. immunol. 9 (2018) 1691-1691. https://doi.org/10.3389/fimmu.2018.01691.

87. Rivera J., Fierro N. A., Olivera A. and Suzuki R. - New insights on mast cell activation via the high affinity receptor for IgE, Adv. Immunol. 98 (2008) 85-120. https://doi.org/10.1016/S0065-2776(08)00403-3.

88. Dema B., Suzuki R. and Rivera J. - Rethinking the role of immunoglobulin E and its high-affinity receptor: new insights into allergy and beyond, Int. Arch. Allergy Immunol. 164 (4) (2014) 271-279. https://doi.org/10.1159/000365633.

89. McDermott J. R., Bartram R. E., Knight P. A., Miller H. R. P., Garrod D. R. and Grencis R. K. - Mast cells disrupt epithelial barrier function during enteric nematode infection. Proc. Natl. Acad. Sci. U. S. A. 100 (13) (2003) 7761-7766. https://doi.org/10.1073/pnas.1231488100.

90. Sasaki Y., Yoshimoto T., Maruyama H., Tegoshi T., Ohta N., Arizono N. and Nakanishi K. - IL-18 with IL-2 protects against Strongyloides venezuelensis infection by activating mucosal mast cell–dependent type 2 innate immunity. J. Exp. Med. 202 (5) (2005) 607-616. https://doi.org/10.1084/jem.20042202.

91. Metz M., Siebenhaar F. and Maurer M. - Mast cell functions in the innate skin immune system. Immunobiology. 213 (3-4) (2008) 251-260. https://doi.org/10.1016/j.imbio.2007.10.017.

92. Maurer M., Lopez Kostka S., Siebenhaar F., Moelle K., Metz M., Knop J. and Von Stebut E. - Skin mast cells control T cell‐dependent host defense in Leishmania major infections. FASEB J. 20 (14) (2006) 2460-2467. https://doi.org/10.1096/fj.06-5860com.

93. Auclair S. R., Roth K. E., Saunders B. L., Ogborn K. M., Sheikh A. A., Naples J., Young A. M. P., Boisen D. K., Tavangar A. T., Welch J. E. and Lantz C. S. - Interleukin-3-deficient mice have increased resistance to blood-stage malaria. Infect. Immun. 82 (3) (2014) 1308-1314. https://doi.org/10.1128/iai.01140-13.

94. Corvan S. M., Agnew L. and Andronicos N. M. - Trichostrongylus colubriformis induces IgE-independent CD13, CD164 and CD203c mediated activation of basophils in an in vitro intestinal epithelial cell co-culture model. Vet. Parasitol. 207 (3-4) (2015) 285-296. https://doi.org/10.1016/j.vetpar.2014.10.012.

95. Ortega L., Quesada J., Ruiz A., Conde-Felipe M. M., Ferrer O., Rodríguez F. and Molina J. S. - Local immune response of Canarian Majorera goats infected with Teladorsagia circumcincta. Parasit. Vectors. 15 (1) (2022) 25-25. https://doi.org/10.1186/s13071-021-05145-y.

96. Alba-Hurtado F. and Muñoz-Guzmán M. A. - Immune responses associated with resistance to haemonchosis in sheep. Biomed Res. Int. (1) (2013) 162158. https://doi.org/10.1155/2013/162158.

97. Guo Z., González J. F., Hernandez J. N., McNeilly T. N., Corripio-Miyar Y., Frew D., Morrison T., Yu T. and Li R. W. - Possible mechanisms of host resistance to Haemonchus contortus infection in sheep breeds native to the Canary Islands. Sci. Rep. (2016) 26200-26200. https://doi.org/10.1038/srep26200.

98. Matos L., Muñoz M. C., Molina J. M., Rodríguez F., Perez D., Lopez A., Ferrer O., Hermosilla C., Taubert A. and Ruiz A. - Protective immune responses during prepatency in goat kids experimentally infected with Eimeria ninakohlyakimovae. Vet. Parasitol. 242 (2017) 1-9. https://doi.org/10.1016/j.vetpar.2017.04.016.

99. Donskow-Łysoniewska K., Maruszewska-Cheruiyot M. and Stear M. - The interaction of host and nematode galectins influences the outcome of gastrointestinal nematode infections, Parasitol. 148 (6) 2021 648-654. https://doi.org/10.1017/S003118202100007X.

100. Alfaiz F. A. - Evaluation of the role of mast cells in parasitic infection. Strathclyde (2017). https://doi.org/10.48730/8yh1-3c38.

101. Furuta T., Kikuchi T., Iwakura Y. and Watanabe N. - Protective Roles of Mast Cells and Mast Cell-Derived TNF in Murine Malaria. J. Immunol. 177 (5) (2006) 3294-3302. https://doi.org/10.4049/jimmunol.177.5.3294.

102. Coutinho M. L., Bizzarro B., Tirloni L., Berger M., Oliveira C. J. F., Sá-Nunes A. and Vaz I. S. Jr. - Rhipicephalus microplus serpins interfere with host immune responses by specifically modulating mast cells and lymphocytes. Ticks Tick Borne. Dis. 11 (4) (2020) 101425. https://doi.org/10.1016/j.ttbdis.2020.101425.

103. Aboshady H. M. - Genomic variation and molecular mechanisms of the host response to gastrointestinal nematodes in small ruminants. Acta. Uni. Agric. Suec. Agrar. (2020) 13.

104. Machín C., Corripio-Miyar Y., Hernández J. N., Pérez-Hernández T., Hayward A. D., Wright H. W., Price D. R. G., Matthews J. B., McNeilly T. N., Nisbet A. J. and González J. F. - Cellular and humoral immune responses associated with protection in sheep vaccinated against Teladorsagia circumcincta. Vet. Res. 52 (1) (2021) 89-89. https://doi.org/10.1186/s13567-021-00960-8.

105. Karrow N. A., Goliboski K., Stonos N., Schenkel F. and Peregrine A. - Review: Genetics of helminth resistance in sheep. Can. J. Anim. Sci. 94 (1) (2014) 1-9. https://doi.org/10.4141/cjas2013-036.

106. Gómez de Agüero V. C., Valderas-García E., González del Palacio L., Giráldez F. J., Balaña-Fouce R. and Martínez-Valladares M. - Secretory IgA as biomarker for gastrointestinal nematodes natural infection in different breed sheep. Animals 13 (2023) 2189. https://doi.org/10.3390/ani13132189.

107. Nisbet A. J., Meeusen E. N., González J. F. and Piedrafita D. M. - Immunity to Haemonchus contortus and Vaccine Development, in Advances in Parasitology. Elsevier (2016) 353-396. https://doi.org/10.1016/bs.apar.2016.02.011.

108. Fernández-Blanco J. A., Estévez J., Shea-Donohue T., Martínez V. and Vergara P. - Changes in Epithelial Barrier Function in Response to Parasitic Infection: Implications for IBD Pathogenesis. J. Crohns Colitis. 9 (6) (2015) 463-476. https://doi.org/10.1093/ecco-jcc/jjv056.

109. Reitz M., Brunn M. L., Rodewald H. R., Feyerabend T. B., Roers A., Dudeck A., Voehringer D., Jönsson F., Kühl A. A. and Breloer M. - Mucosal mast cells are indispensable for the timely termination of Strongyloides ratti infection. Mucosal Immunol. 10 (2) (2017) 481-492. https://doi.org/10.1038/mi.2016.56.

110. Carlos D., Machado E. R., De Paula L., Sá-Nunes A., Sorgi C. A., Jamur M. C., Oliver C., Lima W. T. and Faccioli L. H. - Evidence for eosinophil recruitment, leukotriene B4 production and mast cell hyperplasia following Toxocara canis infection in rats. Braz. J. Med. Biol. Res. 44 (2011) 319-326. https://doi.org/10.1590/S0100-879X2011007500027.

111. Hashimoto K., Uchikawa R., Tegoshi T., Takeda K., Yamada M. and Arizono N. Immunity-mediated regulation of fecundity in the nematode, Heligmosomoides polygyrus, the potential role of mast cells. Parasitol. 137 (5) (2009) 881-887. https://doi.org/10.1017/S0031182009991673.

112. Mukai K., Tsai M., Starkl P., Marichal T. and Galli S. J. - IgE and mast cells in host defense against parasites and venoms. Semin. Immunopathol. 38 (5) (2016) 581-603. https://doi.org/10.1007/s00281-016-0565-1.

113. Jiménez M., Cervantes-García D., Córdova-Dávalos L. E., Pérez-Rodríguez M. J., Gonzalez-Espinosa C. and Salinas E. - Responses of mast cells to pathogens: Beneficial and detrimental roles. Front. immunol. 12 (2021) 685865. https://doi.org/10.3389/fimmu.2021.685865.

114. LeJambre L. F., Windon R. G. and Smith W. D. - Vaccination against Haemonchus contortus: Performance of native parasite gut membrane glycoproteins in Merino lambs grazing contaminated pasture. Vet. Parasitol. 153 (3-4) (2008) 302-312. https://doi.org/10.1016/j.vetpar.2008.01.032.

115. Britton C., Emery D. L., McNeilly T. N., Nisbet A. J. and Stear M. J. - The potential for vaccines against scour worms of small ruminants. Int. J. Parasitol. 50 (8) (2020) 533-553. https://doi.org/10.1016/j.ijpara.2020.04.003.

116. Emery D. L., McClure S. J. and Wagland B. M. - Production of vaccines against gastrointestinal nematodes of livestock. Immunol. Cell Biol. 71 (5) (1993) 463-472. https://doi.org/10.1038/icb.1993.52.

117. Irfan Maqsood M., Matin M. M., Bahrami A. R. and Ghasroldasht M. M. - Immortality of cell lines: challenges and advantages of establishment. Cell Biol. Int. 37 (10) (2013) 1038-1045. https://doi.org/10.1002/cbin.10137.

118. Guo D., Zhang L., Wang X., Zheng J., Lin S. - Establishment methods and research progress of livestock and poultry immortalized cell lines: A review. Front. Vet. Sci. 9 (2022) 956357-956357. https://doi.org/10.3389/fvets.2022.956357.

119. Dahlin J. S., Ekoff M., Grootens J., Löf L., Amini R. M., Hagberg H., Ungerstedt J. S., Olsson-Strömberg U. and Nilsson G. - KIT signaling is dispensable for human mast cell progenitor development. Blood Am. J. Hematol. 130 (16) (2017) 1785-1794. https://doi.org/10.1182/blood-2017-03-773374.

120. Billerbeck E., Barry W. T., Mu K., Dorner M., Rice C. M. and Ploss A. - Development of human CD4+ FoxP3+ regulatory T cells in human stem cell factor, granulocyte-macrophage colony-stimulating factor, and interleukin-3–expressing NOD-SCID IL2Rγnull humanized mice. Blood Am. J. Hematol. 117 (11) (2011) 3076-3086. https://doi.org/10.1182/blood-2010-08-301507.

121. Krystel-Whittemore M., Dileepan K. N. and Wood J. G. - Mast Cell: A Multi-Functional Master Cell. Front. Immunol. 6 (2016) 620. https://doi.org/10.3389/fimmu.2015.00620.

122. Tanaka S. and Furuta K. - Roles of IgE and Histamine in Mast Cell Maturation. Cells 10 (8) (2021) 2170. https://doi.org/10.3390/cells10082170.

123. Valent P., Akin C., Hartmann K., Nilsson G., Reiter A., Hermine O., Sotlar K., R Sperr W., Escribano L., I George T., Kluin-Nelemans H. C., Ustun C., Triggiani M., Brockow K., Gotlib J., Orfao A., Kovanen P., Hadzijusufovic E., Sadovnik I., Horny H.-P., Arock M., Schwartz L. B., Austen K. F., Metcalfe D. D., Galli S. J. - Mast cells as a unique hematopoietic lineage and cell system: From Paul Ehrlich's visions to precision medicine concepts. Theranostics 10 (23) (2020) 10743-10768. https://doi.org/10.7150/thno.46719.

124. Varricchi G., Poto R., Marone G. and Schroeder J. T. - IL-3 in the development and function of basophils. Semin. Immunol. 54 (2021) 101510. https://doi.org/ 10.1016/j.smim.2021.101510.

125. Tsai M., Valent P., Galli S. J. - KIT as a master regulator of the mast cell lineage. J. Allergy Clin. Immunol. 149 (6) (2022) 1845-1854. https://doi.org/ 10.1016/j.jaci.2022.04.012.

126. Junttila I. S., Watson C., Kummola L., Chen X., Hu-Li J., Guo L., Yagi R. and Paul W. E. - Efficient cytokine-induced IL-13 production by mast cells requires both IL-33 and IL-3. J. Allergy Clin. Immunol. 132 (3) (2013) 704-712.e10. https://doi.org/ 10.1016/j.jaci.2013.03.033.

127. Ribatti D. - The development of human mast cells. An historical reappraisal. Exp. Cell Res. 342 (2) (2016) 210-215. https://doi.org/10.1016/j.yexcr.2016.03.013.

128. Reber L. L., Sibilano R., Mukai K. and Galli S. J. - Potential effector and immunoregulatory functions of mast cells in mucosal immunity. Mucosal Immunol. 8 (3) (2015) 444-463. https://doi.org/10.1038/mi.2014.131.

129. Sabbaghi F., Ullner L., Bohn T., Hahlbrock J., Bopp T., Schmitt E., Klein M. and Stassen M. - In Activated Murine Mast Cells, NFATc2 Is Critical for the Production of Autocrine IL-3, Thereby Promoting the Expression of IL-9. J. Immunol. 206 (1) (2021) 67-76. https://doi.org/10.4049/jimmunol.1900310.

130. Conti P. and Shaik-Dasthagirisaeb Y. - Atherosclerosis: a chronic inflammatory disease mediated by mast cells. Eur. J. Immunol. 40 (3) (2015) 380-386. https://doi.org/ 10.5114/ceji.2015.54603.

131. Komi D. E. A., Khomtchouk K. and Santa Maria P. L. - A Review of the Contribution of Mast Cells in Wound Healing: Involved Molecular and Cellular Mechanisms. Clin. Rev. Allergy Immunol. 58 (3) (2019) 298-312. https://doi.org/10.1007/s12016-019-08729-w.

132. Hu Z. Q., Zhao W. H., Shimamura T. - Regulation of Mast Cell Development by Inflammatory Factors. Curr. Med. Chem. 14 (28) (2007) 3044-3050. https://doi.org/10.2174/092986707782793998.

133. Möllerherm H., Meier K., Schmies K., Fuhrmann H., Naim H. Y., Von Köckritz-Blickwede M., Branitzki-Heinemann K. - Differentiation and Functionality of Bone Marrow-Derived Mast Cells Depend on Varying Physiologic Oxygen Conditions. Front. immunol. 8 (2017) 1665-1665. https://doi.org/10.3389/fimmu.2017.01665.

134. Bugajev V., Draberova L., Utekal P., Blazikova M., Tumova M. and Draber P. - Enhanced Membrane Fluidization and Cholesterol Displacement by 1-Heptanol Inhibit Mast Cell Effector Functions. Cells 12 (16) (2023) 2069. https://doi.org/10.3390/cells12162069.

135. Dahl C., Hoffmann H. J., Saito H. and Schiøtz P. O. - Human mast cells express receptors for IL‐3, IL‐5 and GM‐CSF; a partial map of receptors on human mast cells cultured in vitro. Allergy. 59 (10) (2004) 1087-1096. https://doi.org/10.1111/j.1398-9995.2004.00606.x.

136. Siebenhaar F., Redegeld F. A., Bischoff S. C., Gibbs B. F. and Maurer M. - Mast Cells as Drivers of Disease and Therapeutic Targets. Trends Immunol. 39 (2) (2018) 151-162. https://doi.org/10.1016/j.it.2017.10.005.

137. Sibilano R., Frossi B. and Pucillo C. E. - Mast cell activation: A complex interplay of positive and negative signaling pathways. Eur. J. Immunol. 44 (9) (2014) 2558-2566. https://doi.org/10.1002/eji.201444546.

138. Igarashi A., Ebihara Y., Kumagai T., Hirai H., Nagata K. and Tsuji K. - Mast cells derived from human induced pluripotent stem cells are useful for allergen tests. Allergol. Int. 67 (2) (2018) 234-242. https://doi.org/10.1016/j.alit.2017.08.008.

139. Kolkhir P., Elieh-Ali-Komi D., Metz M., Siebenhaar F. and Maurer M. - Understanding human mast cells: lesson from therapies for allergic and non-allergic diseases. Nat. Rev. Immunol. 22 (5) (2021) 294-308. https://doi.org/10.1038/s41577-021-00622-y.

Downloads

Published

27-12-2024

How to Cite

[1]
S. V. Vu, S. C. M. Niciura, and C. Gondro, “Immune response against gastrointestinal nematodes and the potential application of immortalized cell lines in the sheep industry”, Vietnam J. Sci. Technol., vol. 63, no. 1, pp. 1–21, Dec. 2024.

Issue

Section

Review