Chemical potential and biomedical activity of gold nanoparticles in cancer and drug delivery systems: an updat

Sandeep Kumar Soni, Manoj Solanki
Author affiliations

Authors

  • Sandeep Kumar Soni M.Sc. Chemistry & Inspire (SHE) Scholar, Department of Chemistry, A.P.S. University, Rewa (M.P.), India, 486001 https://orcid.org/0000-0001-8767-6131
  • Manoj Solanki Associate Professor & HOD, Department of Chemistry, Rewa Engineering College, Rewa (M.P.), India, 486001

DOI:

https://doi.org/10.15625/2525-2518/19457

Keywords:

Gold Nanoparticle, anticancer activity, cancer, Au nanoparticles/cluster, nanotechnology

Abstract

Gold nanoparticles (AuNPs) are broadly utilized in medical fields because of its unique potential, biomedical activity and physicochemical properties. The biocompatible nature, optical properties, and minor cytotoxicity are the key features of AuNPs which make them valuable for biomedical applications. Today, AuNPs are widely used for cancer therapy, bioimaging, biosensing, radiotherapy, photodynamic therapy and drug delivery system. The present article illustrates the current progress in AuNPs synthesis, properties of AuNPs, various biomedical activity of AuNPs in therapeutic fields and drug delivery systems. Apart from numerous benefits the chemically synthesized AuNPs also creates certain level of toxicity in the living system which represents confronts of AuNPs against biomedical applications. Reducing its cytotoxic nature and development of green AuNPs can led to development of new history in field of medical science and clinical trials. Thus, the present review article deals with the compiled study of various fundamental research over AuNPs such as its chemical and bio-synthesis, biomedical and therapeutic applications viz. plasmonic photothermal therapy, photodynamic therapy, folate receptor targeting, targeted drug delivery etc. The article also finds some of its confronts against biomedical application because of its cytotoxic nature and its possible future prospects.

Downloads

Download data is not yet available.

References

Shankar S. S., Rai A., Ahmad A., Sastry M. - Rapid synthesis of Au, Ag, and bimetallic Au core– Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth, J. Colloid Interface Sci. 275 (2004) 496-502. DOI: https://doi.org/10.1016/j.jcis.2004.03.003

Das, S. K., Marsili, E. - A green chemical approach for the synthesis of gold nanoparticles: characterization and mechanistic aspect, Rev. Environ. Sci. Bio/Tech. 9 (2010) 199-204. DOI: https://doi.org/10.1007/s11157-010-9188-5

Joseph M. M., Aravind S. R., Varghese S., Mini S., Sreelekha T. T. - PST-Gold nanoparticles as an effective anticancer agent with immunomodulatory properities, Colloids Surf. B: Biointerfaces 104 (2013) 32-39 DOI: https://doi.org/10.1016/j.colsurfb.2012.11.046

Chen R., Chen Q., Huo D., Ding Y., Hu Y., Jiang X. - In situ formation of chitosan–gold hybrid hydrogel and its application for drug delivery, Colloids Surf. B: Biointerfaces 97 (2012) 132-137.

Saturnino C., Sinicropi M. S., Iacopettab D., Ceramella J., Caruso A. Muia N., Longo P., Rosace G., Galletta M., Ielo I. - N-Thiocarbazole-based gold nanoparticles: Synthesis, characterization and anti-proliferative activity evaluation, IOP Conf. Ser. Mater. Sci. Eng. 459 (2018) 12023. DOI: https://doi.org/10.1088/1757-899X/459/1/012023

Jang H., Kim Y. K., Ryoo S. R., Kim M. H., Min D. H. - Facile synthesis of robust and biocompatible gold nanoparticles, Chem. Commun. 46 (2010) 583–585. DOI: https://doi.org/10.1039/B919971N

Badri N. K., Sakthivel N. - Coriander leaf mediated biosynthesis of gold nanoparticles, Mater. Lett. 62 (2008) 4588-4590. DOI: https://doi.org/10.1016/j.matlet.2008.08.044

Hrushikesh M. J., Devika R. B., Kalpana J., Varsha P., Sastry M. - Gold nanoparticles as carriers for efficient transmucosal insulin delivery, Langmuir. 22 (2006) 300-305.

Satish K. N., Nripen C., Ravi S., Kavita K., Rajesh R. K., Subramanian T., Swapna M., Raghuraman K., Kattesh V. K. - Green nanotechnology from tea: Phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles, J. Mater. Chem. 19 (2009) 2912-2920. DOI: https://doi.org/10.1039/b822015h

Zhou M., Wang B., Rozynek Z., Xie Z., Fossum J. O., Yu X., Raaen S. - Minute synthesis of extremely stable gold nanoparticles, Nanotechnology 20 (50) (2009) 505606. DOI: https://doi.org/10.1088/0957-4484/20/50/505606

Fan L., Wang W., Wang Z., Zhao M. - Gold nanoparticles enhance antibody effect through direct cancer cell cytotoxicity by differential regulation of phagocytosis, Nature comm. 12 (1) (2021) 6371. DOI: https://doi.org/10.1038/s41467-021-26694-x

Ravi S., Satish K. N., Nripen C., Kavita K., Swapna M., Rajesh R. K., Wade V. W., Raghuraman K., Kattesh V. K. - Soybeans as a phytochemical reservoir for the production and stabilization of biocompatible gold nanoparticles, Small 4 (9) (2008) 1425-1436. DOI: https://doi.org/10.1002/smll.200800525

Ashok B., Bhagyashree J, Ameeta R., Smita Z. - Banana peel extract mediated synthesis of gold nanoparticles, Colloids Surf. B: Biointerfaces 80 (2010) 45-50. DOI: https://doi.org/10.1016/j.colsurfb.2010.05.029

Suarasan S., Focsan M., Maniu D., Astilean S. - Gelatine nanogold bioconjucate as effective plasmonic platform for SERS detection and targeting, Colloids Surf. B: Biointerfaces 103 (2013) 475-481. DOI: https://doi.org/10.1016/j.colsurfb.2012.10.046

Mubarak A. D., Thajuddin N., Jeganathan K., Gunasekaran M. - Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens, Colloids and Surf B: Biointerfaces 85 (2011) 360-365. DOI: https://doi.org/10.1016/j.colsurfb.2011.03.009

Joshi H. M., Bhumkar D. R,Joshi K., Pokharkar V.,Sastry M. - Gold nanoparticles as carriers for efficient transmucosal insulin delivery, Langmuir 22 (2006) 300-305. DOI: https://doi.org/10.1021/la051982u

Lee I. H., Kwon H. K., An S., Kim D., Kim S., Yu M. K., Lee J. H., Lee T. S., Im S. H., Jon S. - Imageable antigen-presenting gold nanoparticle vaccines for effective cancer immunotherapy in vivo, Angew. Chem. Int. Ed. 51 (2012) 8800-8805 DOI: https://doi.org/10.1002/anie.201203193

Vasir J. K., Reddy M. K., Labhasetwar V. D. - Nanosystems in drug targeting: opportunities and challenges, Current Nanosci 1 (2005) 47-64. DOI: https://doi.org/10.2174/1573413052953110

Pissuwan D., Valenzuela S. M., Killingsworth M. C., Xu X., Cortie M. B. - Targeted destruction of murine macrophage cells with bioconjugated gold nanorods, J. Nanopart. Res. 9 (2007) 1109-1124. DOI: https://doi.org/10.1007/s11051-007-9212-z

Bhattacharya R., Patra C. R., Earl A., Wang S., Katarya A., Lu L., Kizhakkedathu J. N., Yaszemski M. J., Greipp P. R., Mukhopadhyay D., Mukherjee P. - Attaching folic acid on gold nanoparticles using noncovalent interaction via different polyethylene glycol backbones and targeting of cancer cells, Nanomedi 3 (3) (2007) 224-238. DOI: https://doi.org/10.1016/j.nano.2007.07.001

Mirkin C. A., Letsinger R. L., Mucic R. C., Storhoff J. J. - A DNA-based method for rationally assembling nanoparticles into macroscopic materials, Nature 382 (1996) 607-609. DOI: https://doi.org/10.1038/382607a0

Leuvering J. H., Goverde B. C., Thal P. J., Schuurs A. H. - A homogeneous sol particle immunoassay for human chorionic gonadotrophin using monoclonal antibodies, J. Immunol. Methods 60 (1983) 9-23. DOI: https://doi.org/10.1016/0022-1759(83)90330-7

Deelder A. M., Dozy M. H. - Applicability of sol particle immunoassay (SPIA) for detection of schistosoma mansoni circulating antigens, Acta Leiden 48 (1982) 17-22.

Wielaard F., Denissen A., van der V. L, Rutjes I. - A sol-particle immunoassay for determination of anti rubella antibodies; development and clinical validation, J. Virol. Methods 17 (1987) 149-158. DOI: https://doi.org/10.1016/0166-0934(87)90078-4

Zeisler R., Stone S. F., Viscidi R. P., Cerny E. H. - Sol particle immunoassays using colloidal gold and neutron activation, J. Radioanal. Nucl. Chem. 167 (1993) 445-452. DOI: https://doi.org/10.1007/BF02037202

Pavlov V., Xiao Y., Shlyahovsky B., Willner I. - Aptamer functionalized Au nanoparticles for the amplified optical detection of thrombin, J. Am. Chem. Soc. 126 (2004) 11768- 11769 DOI: https://doi.org/10.1021/ja046970u

Aslan K., Lakowicz J. R., Geddes C. D. - Nanogold Plasmon resonance based glucose sensing, Anal. Biochem. 330 (2004) 145-155. DOI: https://doi.org/10.1016/j.ab.2004.03.032

Medley C. D., Smith J. E., Tang Z., Wu Y., Bamrungsap S., Tan W. - Gold nanoparticle based colorimetric assay for the direct detection of cancerous cells, Anal. Chem. 80 (2008) 1067-1072. DOI: https://doi.org/10.1021/ac702037y

Chirathaworn C., Chantaramalai T., Sereemaspun A., Kongthong N., Suwancharoen D. -Detection of leptospira in urine using anti leptospira coated gold nanoparticles. Comp. Immunol, Microbiol. Infect. Dis. 34 (2011) 31-34. DOI: https://doi.org/10.1016/j.cimid.2009.10.006

Neely A., Perry C., Varisli B., Singh A. K., Arbneshi T., Senapati D., Kalluri J. R., Ray P. C. - Ultrasensitive and highly selective detection of Alzheimer's disease biomarker using two-photon rayleigh scattering properties of gold nanoparticle, ACS Nano 3 (2009) 2834-2840. DOI: https://doi.org/10.1021/nn900813b

Baek T. J., Park P. Y., Han K. N., Kwon H. T., Seong G. H. - Development of a photodiode array biochip using a bipolar semiconductor and its application to detection of human papilloma virus, Anal. Bioanal. Chem. 390 (2008) 1373-1378. DOI: https://doi.org/10.1007/s00216-007-1814-x

Mahmoud K. A., Luong J. H. - Impedance method for detecting HIV-1 protease and screening for its inhibitors using ferrocene-peptide conjugate/Au nanoparticle/single-walled carbon nanotube modified electrode, Anal. Chem. 80 (2008) 7056-7062. DOI: https://doi.org/10.1021/ac801174r

Georganopoulou D. G., Chang L., Nam J. M., Thaxton C. S., Mufson E. J., Klein W. L., Mirkin C. A. - Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 2273-2276. DOI: https://doi.org/10.1073/pnas.0409336102

Haes A. J., Chang L., Klein W. L., Van Duyne R. P. - Detection of a biomarker for Alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor, J. Am. Chem. Soc. 127 (2005) 2264-2271. DOI: https://doi.org/10.1021/ja044087q

Simonian A. L., Good T. A., Wang S. S, Wild J. R. - Nanoparticles based optical biosensors for the direct detection of organophosphate chemical warfare agents and pesticides, Anal. Chim. Acta. 534 (2005) 69-77. DOI: https://doi.org/10.1016/j.aca.2004.06.056

Boghaert E. R., Khandke K. M., Sridharan L., Dougher M., DiJoseph J. F., Kunz A., Hamann P. R., Moran J., Chaudhary I., Damle N. K. - Determination of pharmacokinetic values of calicheamicin-antibody conjugates in mice by plasmon resonance analysis of small (5 microl) blood samples, Cancer Chemother. Pharmacol. 61 (2008) 1027-1035. DOI: https://doi.org/10.1007/s00280-007-0560-2

Maier I., Morgan M. R., Lindner W., Pittner F. - Optical resonance-enhanced absorption based near-field immunochip biosensor for allergen detection, Anal. Chem. 80 (2008) 2694-2703. DOI: https://doi.org/10.1021/ac702107k

De la E. A., Sánchez-Espinel C., Díaz-Freitas B., González-Fernández A., Maltez-da Costa M., Merkoçi A. - Rapid identification and quantification of tumor cells using an electrocatalytic method based on gold nanoparticles,Anal. Chem. 81 (2009) 10268-10274. DOI: https://doi.org/10.1021/ac902087k

Guerrero-Florez V., Mendez-Sanchez S. C., Patrón-Soberano O. A., Rodríguez-González V., Blach, D., Martínez, F. - Gold nanoparticle-mediated generation of reactive oxygen species during plasmonic photothermal therapy: A comparative study for different particle sizes, shapes, and surface conjugations, J. of Mate. Chem. B 8 (14) (2020) 2862-2875. DOI: https://doi.org/10.1039/D0TB00240B

Chen J., Gong M., Fan Y., Feng J., Han L., Xin, H. L., Yin Y.- Collective plasmon coupling in gold nanoparticle clusters for highly efficient photothermal therapy, ACS nano 16(1) (2022) 910-920. DOI: https://doi.org/10.1021/acsnano.1c08485

Manrique-Bedoya S., Abdul-Moqueet M., Lopez P., Gray T., Disiena M., Locker A., Mayer K. M. - Multiphysics modeling of plasmonic photothermal heating effects in gold nanoparticles and nanoparticle arrays, The J. of Phy. Chem. 124 (31) (2020) 17172-17182. DOI: https://doi.org/10.1021/acs.jpcc.0c02443

Ali H. R., Selim S. A., Aili D. - Effects of macrophage polarization on gold nanoparticle-assisted plasmonic photothermal therapy, RSC Adv. 11(40) (2021) 25047-25056. DOI: https://doi.org/10.1039/D1RA03671H

Gupta N., Malviya, R. - Understanding and advancement in gold nanoparticle targeted photothermal therapy of cancer, Biochimica et Biophysica Acta (BBA)-Rev. on Cancer 1875 (2) (2021) 188532. DOI: https://doi.org/10.1016/j.bbcan.2021.188532

Yang W., Xia B., Wang L., Ma S., Liang H., Wang D., Huang J. - Shape effects of gold nanoparticles in photothermal cancer therapy, Mat. Today Sust. 13 (2021) 100078. DOI: https://doi.org/10.1016/j.mtsust.2021.100078

Dheyab M. A., Aziz A. A., Khaniabadi P. M., Jameel M. S., Oladzadabbasabadi N., Rahman, A. A., Mehrdel B. - Gold nanoparticles-based photothermal therapy for breast cancer, Photodiagnosis and photodynamic therapy (2023) 103312 DOI: https://doi.org/10.1016/j.pdpdt.2023.103312

Figueiredo A. Q., Rodrigues C. F., Fernandes N., Correia I. J., Moreira A. F. - In situ formation of alginic acid‐gold nanohybrids for application in cancer photothermal therapy, Biotech. J. (2023) 2300019 DOI: https://doi.org/10.1002/biot.202300019

Lv W., Wu H., Zhang Y., Li H., Shu H., Su, C., Nie F. - cRGD-targeted gold-based nanoparticles overcome EGFR-TKI resistance of NSCLCvia low-temperature photothermal therapy combined with sonodynamic therapy, Biomat. Sci. 11 (5) (2023) 1677-1691. DOI: https://doi.org/10.1039/D2BM01825J

Villuendas H., Vilches C., Quidant R. - Standardization of In Vitro Studies for Plasmonic Photothermal therapy, ACS Nanosci. Au. 3 (5) (2023) 347-352. DOI: https://doi.org/10.1021/acsnanoscienceau.3c00011

Faid A. H., Shouman S. A., Thabet N. A., Badr Y. A., Sliem M. A. - Laser enhanced combinatorial chemo-photothermal therapy of green synthesis gold nanoparticles loaded with 6 mercaptopurine on breast cancer model, J. Pharm. Innov. 18 (1) (2023) 44-148. DOI: https://doi.org/10.1007/s12247-022-09626-0

Gupta T., Pawar B., Vasdev N., Pawar V., Tekade R. K. - Carbonaceous Nanomaterials for Phototherapy of Cancer, Technol. Cancer Res. Treat. (2023) 22. DOI: https://doi.org/10.1177/15330338231186388

Goddard Z. R., Beekman A. M., Cominetti M. M., O'Connell M. A., Chambrier I., Cook M. J., Searcey M. - Peptide directed phthalocyanine–gold nanoparticles for selective photodynamic therapy of EGFR overexpressing cancers, RSC Med. Chem. 12 (2) (2021) 288-292. DOI: https://doi.org/10.1039/D0MD00284D

Shang L., Zhou X., Zhang J., Shi Y., Zhong L. - Metal nanoparticles for photodynamic therapy: A potential treatment for breast cancer, Molecules 26 (21) (2021) 6532. DOI: https://doi.org/10.3390/molecules26216532

Wilson B. C. - Handbook of Photonics for Biomedical Science, ed. V. V. Tuchin, CRC Press, Boca Raton (2010) 649-686. DOI: https://doi.org/10.1201/9781439806296-c25

Wilson R. - The use of gold nanoparticles in diagnostics and detection, Chem. Soc. Rev. 37 (2008) 2028-2045. DOI: https://doi.org/10.1039/b712179m

Maeda H., Wu J., Sawa T., Matsumura Y., Hori K. - Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review, J. Controlled Release 65 (2000) 271-284. DOI: https://doi.org/10.1016/S0168-3659(99)00248-5

Kurawattimath V., Wilson B., Geetha K. M. - Nanoparticle-based drug delivery across the blood-brain barrier for treating malignant brain glioma, OpenNano (2023) 100128. DOI: https://doi.org/10.1016/j.onano.2023.100128

Carreón González J. L., García Casillas P. E., Chapa González C. - Gold Nanoparticles as Drug Carriers: The Role of Silica and PEG as Surface Coatings in Optimizing Drug Loading, Micromach 14 (2) (2023) 451. DOI: https://doi.org/10.3390/mi14020451

Masood F. - Polymeric nanoparticles for targeted drug delivery system for cancer therapy, Mat. Sci. Eng. C 60(2016) 569-578. DOI: https://doi.org/10.1016/j.msec.2015.11.067

Paciotti G. F., Kingston D. G. I., Tamarkin L. - Colloidal gold nanoparticles: A novel nanoparticles platform for developing multifunctional tumor targeted drug delivery vector, Drug Dev. Res. 67 (2006) 47-54. DOI: https://doi.org/10.1002/ddr.20066

Hassanen E. I., Korany R. M., Bakeer A. M. - Cisplatin‐conjugatedgoldnanoparticles‐based drug delivery system for targeting hepatic tumors, J. of Biochem. and Mole. Toxico 35 (5) (2021) e22722. DOI: https://doi.org/10.1002/jbt.22722

Dhar S., Daniel W. L., Giljohann D. A., Mirkin C. A., Lippard S. J. - Polyvalent oligonucleotide gold nanoparticle conjugates as delivery vehicles for platinum(IV) warheads, J. Am. Chem. Soc. 131 (2009) 14652-14653. DOI: https://doi.org/10.1021/ja9071282

Brown S. D., Nativo P., Smith J. A., Stirling D., Edwards P. R., Venugopal B., Flint D. J., Plumb J. A., Graham D., Wheate N. J. - Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin, J. Am. Chem. Soc. 132 (2010) 4678-4684. DOI: https://doi.org/10.1021/ja908117a

Pun S. H., Davis M. E. - Development of a nonviral gene delivery vehicle for systemic application, Bioconjugate Chem. 13 (3) (2002) 630-639. DOI: https://doi.org/10.1021/bc0155768

Lee E. S., Oh K. T., Kim D., Youn Y. S., Bae Y. H. - Tumor pH responsive flower like micelles of poly(L-lactic acid)-b-poly(ethylene glycol)-b-poly(L-histidine), J. Controlled Release 123 (2007) 19-26. DOI: https://doi.org/10.1016/j.jconrel.2007.08.006

Paciotti G. F., Myer L., Weinreich D., Goia D., Pavel N., McLaughlin R. E., Tamarkin L. - Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery, Drug Deliv. 11 (3) (2004) 169-183. DOI: https://doi.org/10.1080/10717540490433895

Zhang S., Chen C., Xue C., Chang D., Xu H., Salena B. J., Wu Z. S. - Ribbon of DNA lattice on gold nanoparticles for selective drug delivery to cancer cells, Angewandte Chemie Inter. Ed. 59 (34) (2020) 14584-14592. DOI: https://doi.org/10.1002/anie.202005624

Fan M., Han Y., Gao S., Yan H., Cao L., Li Z., Zhang J. - Ultrasmall gold nanoparticles in cancer diagnosis and therapy, Theranostics 10 (11) (2020) 4944. DOI: https://doi.org/10.7150/thno.42471

Ghosh P., Han G., De M., Kim C. K., Rotello V. M. - Gold nanoparticles in delivery applications, Adv. Drug Deliv. Rev. 60 (2008) 1307-1315. DOI: https://doi.org/10.1016/j.addr.2008.03.016

Kim C. K., Ghosh P., Pagliuca C., Zhu Z. J., Menichetti S., Rotello V. M. - Entrapment of hydrophobic drugs in nanoparticle monolayers with efficient release into cancer cells, J. Am. Chem. Soc. 131 (2009) 1360-1361.

Javier D. J., Nitin N., Levy M., Ellington A., Richards-Kortum R. - Aptamer targeted gold nanoparticles as molecular specific contrast agents for reflectance imaging, Bioconjugate Chem. 19 (2008) 1309-1312. DOI: https://doi.org/10.1021/bc8001248

Agasti S. S., Chompoosor A., You C. C., Ghosh P., Kim C. K., Rotello V. M. - Photoregulated release of caged anticancer drugs from gold nanoparticles, J. Am. Chem. Soc. 131 (2009) 5728-5729. DOI: https://doi.org/10.1021/ja900591t

Nakanishi J., Nakayama H., Shimizu T., Ishida H., Kikuchi Y., Yamaguchi K., Horiike Y. - Light regulated activation of cellular signaling by gold nanoparticles that capture and release amines, J. Am. Chem. Soc. 131 (11) (2009) 3822-3823. DOI: https://doi.org/10.1021/ja809236a

Chen R., Chen Q., Huo D., Ding Y., Hu Y., Jiang X. - In situ formation of chitosan–gold hybrid hydrogel and its application for drug delivery, Colloids Surf. B: Biointerfaces 97 (2012) 132-137. DOI: https://doi.org/10.1016/j.colsurfb.2012.03.027

Chen Y. H., Tsai C. Y., Huang P. Y., Chang M. Y., Cheng P. C., Chou C. H., Chen D. H., Wang C. R., Shiau A. L., Wu C. L. - Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model, Mol. Pharm. 4 (5) (2007) 713-22. DOI: https://doi.org/10.1021/mp060132k

Matsumura Y., Maeda H. - A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs, Cancer Res. 46 (1986) 6387-6392.

Torchilin V. - Tumor delivery of macromolecular drugs based on the EPR effect, Adv. Drug Deliv. Rev. 63 (2011) 131-135. DOI: https://doi.org/10.1016/j.addr.2010.03.011

Kim C. K., Ghosh P., Pagliuca C., Zhu Z. J., Menichetti S., Rotello V. M. - Entrapment of hydrophobic drugs in nanoparticle monolayers with efficient release into cancer cells, J. Am. Chem. Soc. 131 (2009) 1360-1361. DOI: https://doi.org/10.1021/ja808137c

Low P. S., Henne W. A., Doorneweerd D. D. - Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases, Acc. Chem. Res. 41 (2008)120-129. DOI: https://doi.org/10.1021/ar7000815

Peng L., Liang Y., Zhong X., Liang Z., Tian Y., Li S., Zhang X. - Aptamer-conjugated gold nanoparticles targeting epidermal growth factor receptor variant III for the treatment of glioblastoma, Inter. J. of Nanomed (2020) 1363-1372. DOI: https://doi.org/10.2147/IJN.S238206

Yücel O., Şengelen A., Emik S., Önay-Uçar E., Arda N., Gürdağ G. - Folic acid-modified methotrexate-conjugated gold nanoparticles as nano-sized trojans for drug delivery to folate receptor-positive cancer cells, Nanotech. 31 (35) (2020) 355101. DOI: https://doi.org/10.1088/1361-6528/ab9395

Turk M. J., Breur G. J., Widmer W. R., Paulos C. M., Xu L. C., Grote L. A., Low P. S. - Folate targeted imaging of activated macrophages in rats with adjuvant-induced arthritis, Arthritis Rheum 46 (7) (2002) 1947-55. DOI: https://doi.org/10.1002/art.10405

Antony A. C. - The biological chemistry of folate receptors, Blood. 79 (1992) 2807-2820. DOI: https://doi.org/10.1182/blood.V79.11.2807.bloodjournal79112807

Elnakat H., Ratnam M. - Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy, Adv. Drug Deliv. Rev. 56 (8) (2004) 1067- 1084. DOI: https://doi.org/10.1016/j.addr.2004.01.001

Shmeeda H., Mak L., Tzemach D., Astrahan P., Tarshish M., Gabizon A. - Intracellular uptake and intracavitary targeting of folate conjugated liposomes in a mouse lymphoma model with up-regulated folate receptors, Mol. Cancer Ther. 5 (4) (2006) 818-824. DOI: https://doi.org/10.1158/1535-7163.MCT-05-0543

Garin-Chesa P., Campbell I., Saigo P. E., Lewis J. L. Jr Old L. J., Rettig W. J. -Trophoblast and ovarian cancer antigen LK26 Sensitivity and specificity in immunopathology and molecular identification as a folate binding protein, Am. J. Pathol. 142 (1993) 557-567.

Toffoli G., Cernigoi C., Russo A., Gallo A., Bagnoli M., Boiocchi M. - Overexpression of folate binding protein in ovarian cancers, Int. J. Cancer. 74 (1997) 193-198. DOI: https://doi.org/10.1002/(SICI)1097-0215(19970422)74:2<193::AID-IJC10>3.0.CO;2-F

Gruner B. A., Weitman S. D. - The folate receptor as a potential therapeutic anticancer target, Invest. New Drugs. 16 (1998) 205-219. DOI: https://doi.org/10.1023/A:1006147932159

Kukowska-Latallo J. F., Candido K. A., Cao Z., Nigavekar S. S., Majoros I. J., Thomas T. P., Balogh L. P., Khan M. K., Baker J. R. - Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer, Cancer Res. 65 (12) (2005) 5317-5324. DOI: https://doi.org/10.1158/0008-5472.CAN-04-3921

Ratnam M., Hao H., Zheng X., Wang H., Qi H., Lee R., Pan X. - Receptor induction and targeted drug delivery: a new antileukaemia strategy, Expert Opin. Biol. Ther. 3 (4) (2003) 563-574. DOI: https://doi.org/10.1517/eobt.3.4.563.21197

Dixit V., Van den B. J., Sherman D. M., Thompson D. H., Andres R. P. - Synthesis and grafting of thioctic acid-PEG-folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cells, Bioconjugate Chem. 17 (2006) 603-609. DOI: https://doi.org/10.1021/bc050335b

Kamen B. A., Capdevila A. - Receptor mediated folate accumulation is regulated by the cellular folate content, Proc. Natl. Acad. Sci. USA 83 (1986) 5983-5987. DOI: https://doi.org/10.1073/pnas.83.16.5983

Antony A. C., Kane M. A., Portillo R. M., Elwood P. C., Kolhouse J. F. - Studies of the role of a particulate folate binding protein in the uptake of 5-methyltetrahydrofolate by cultured human KB cells, J. Biol. Chem. 260 (1985) 14911-14917. DOI: https://doi.org/10.1016/S0021-9258(18)95679-6

Leamon C. P., Reddy J. A. -Folate-targeted chemotherapy, Adv. Drug Deliv. Rev. 56 (21) (2004) 1127-1141. DOI: https://doi.org/10.1016/j.addr.2004.01.008

Leamon C. P., Reddy J. A., Vlahov I. R., Westrick E., Dawson A., Dorton R., Vetzel M., Santhapuram H. K., and Wang Y. - Preclinical antitumor activity of a novel folate targeted dual drug conjugate, Mol. Pharm. 4 (5) (2007) 659-667. DOI: https://doi.org/10.1021/mp070049c

Shelar S. B., Barick K. C., Dutta B., Basu M., Hassan P. A. - Selective targeting of gold nanoparticles for radiosensitization of somatostatin 2 receptor-expressing cancer cells, J. of Drug Deli. Sci. Technol. 82 (2023) 104381. DOI: https://doi.org/10.1016/j.jddst.2023.104381

Malekzadeh R., Ghorbani M., Faghani P., Abdollahi B. B., Mortezazadeh T., Farhood B. - Fabrication of targeted gold nanoparticle as potential contrast agent in molecular CT imaging, J. of Radiation Res. App. Sci. 16 (1) (2023) 100490. DOI: https://doi.org/10.1016/j.jrras.2022.100490

Patra C. R., Bhattacharya R., Mukherjee P. - Fabrication and functional characterization of gold nanoconjugates for potential application in ovarian cancer, J. Mater. Chem. 20 (2010) 547-554. DOI: https://doi.org/10.1039/B913224D

Rambanapasi C., Zeevaart J. R., Buntting H. - Bioaccumulation and Subchronic Toxicity of 14 nm Gold Nanoparticles in Rats, Molecules 21 (6) (2016) 763. DOI: https://doi.org/10.3390/molecules21060763

Lasagna R. C., Gonzalez R. D., Barria M. A. - Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice, Biochem Biophys Res. Commun. 393 (4) (2010) 649-655. DOI: https://doi.org/10.1016/j.bbrc.2010.02.046

Glazer E. S., Zhu C., Hamir A. N., Borne A., Thompson C. S., Curley S. A. - Biodistribution and acute toxicity of naked gold nanoparticles in a rabbit hepatic tumor model, Nanotoxicology 5 (4) (2011) 459-468. DOI: https://doi.org/10.3109/17435390.2010.516026

Dam D. H., Culver K. S., Kandela I.- Biodistribution and in vivo toxicity of aptamer-loaded gold nanostars, Nanomedicine 11 (3) (2015) 671-679. DOI: https://doi.org/10.1016/j.nano.2014.10.005

Enea M., Pereira E., Silva D. D. - Study of the intestinal uptake and permeability of gold nanoparticles using both in vitro and in vivo approaches, Nanotechnology 31(19) (2020) 195-202. DOI: https://doi.org/10.1088/1361-6528/ab6dfb

Li X., Hu Z., Ma J. - The systematic evaluation of size-dependent toxicity and multi-time biodistribution of gold nanoparticles, Colloids Surf B Biointerfaces 167 (2018) 260-266.

Engstrom A. M., Faase R. A., Marquart G. W., Baio J. E., Mackiewicz M. R., Harper S. L. - Size-Dependent Interactions of Lipid-Coated Gold Nanoparticles: developing a Better Mechanistic Understanding Through Model Cell Membranes and in vivo Toxicity, Int. J. Nanomedicine 15 (2020) 4091-4104. DOI: https://doi.org/10.2147/IJN.S249622

Wróblewska A. M., Gos N., Zajda J., Ruzik L., Matczuk M.- Drawbacks in the efficient monitoring of gold nanoparticle-based cisplatin delivery systems formation by HPLC–ICP-MS, Metallomics 15 (1) (2023) mfad002. DOI: https://doi.org/10.1093/mtomcs/mfad002

Ginzburg L., et al.-Synergistic toxicity produced by mixtures of biocompatible gold nanoparticles and widely used surfactants, ACS nano 12 (6) (2018) 5312-5322. DOI: https://doi.org/10.1021/acsnano.8b00036

Sharma C., Bansal D., Bhatnagar D., Gautam S., Goyal N. - Advanced Nanomaterials: From Properties and Perspective Applications to Their Interlinked Confronts. In Advanced Functional Nanoparticles" Boon or Bane" for Environment Remediation Applications: Combating Environmental Issues Cham, Springer Intern. Pub. (2023) 1-26. DOI: https://doi.org/10.1007/978-3-031-24416-2_1

Li X., Hu Z., Ma J., et al. - The systematic evaluation of size-dependent toxicity and multi-time biodistribution of gold nanoparticles,Colloids Surf B Biointerfaces 167 (2018) 260-266. DOI: https://doi.org/10.1016/j.colsurfb.2018.04.005

Bansal S. A., Kumar V., Karimi J., Singh A. P., Kumar S. - Role of gold nanoparticles in advanced biomedical applications, Nanoscale Adv. 2 (9) (2020) 3764-3787. DOI: https://doi.org/10.1039/D0NA00472C

Tsoli M., Kuhn H., Brandau W., Esche H., Schmid G. - Cellular uptake and toxicity of Au55 clusters, Small 1(8‐9) (2005) 841-844. DOI: https://doi.org/10.1002/smll.200500104

Dykman Lev A., Nikolai G. K. - Gold nanoparticles in biology and medicine: recent advances and prospects, Acta Naturae 9 (2011) 34-55. DOI: https://doi.org/10.32607/20758251-2011-3-2-34-55

Chatterjee P., Chauhan N., Jain U. - Confronting antibiotic-resistant pathogens: The drug delivery potential of nanoparticle swords, Microbial Pathogen (2023) 106499. DOI: https://doi.org/10.1016/j.micpath.2023.106499

Xiong P., Huang X., Ye N., Lu Q., Zhang G., Peng S., Wang H., Liu Y. - Cytotoxicity of Metal-based Nanoparticles: From Mechanisms and Methods of Evaluation to Pathological Manifestations, Adv. Sci. 9 (2022) 2106049. DOI: https://doi.org/10.1002/advs.202106049

Xu L., Wang Y. Y., Huang J., Chen C. Y., Wang Z. X., Xie H. - Silver Nanoparticles: Synthesis, Medical Applications and Biosafety, Theranostics 10(2020) 8996-9031. DOI: https://doi.org/10.7150/thno.45413

Joseph T. M., Mahapatra D. K., Esmaeili A., Piszczyk Ł., Hasanin M. S., Kattali M., Haponiuk J., Thomas S. - Nanoparticles: Taking a Unique Positionin Medicine, Nanomat 13 (2023) 574. DOI: https://doi.org/10.3390/nano13030574

Downloads

Published

10-05-2024

How to Cite

[1]
S. K. Soni and D. M. K. Solanki, “Chemical potential and biomedical activity of gold nanoparticles in cancer and drug delivery systems: an updat”, Vietnam J. Sci. Technol., vol. 62, no. 3, pp. 405–424, May 2024.

Issue

Section

Review