Levels, profiles, and distribution of perfluoroalkyl substances (PFASs) in groundwater in Bac Ninh province, Viet Nam

Phung Thi Vi, Nguyen Thuy Ngoc, Nguyen Thanh Dam, Pham Hung Viet, Duong Hong Anh
Author affiliations

Authors

  • Phung Thi Vi Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Ha Noi, 334 Nguyen Trai, Thanh Xuan District, Ha Noi, Viet Nam
  • Nguyen Thuy Ngoc Research Centre for Environmental Technology and Sustainable Development (CETASD), University of Science, Vietnam National University, Ha Noi, 334 Nguyen Trai, Thanh Xuan District, Ha Noi, Viet Nam
  • Nguyen Thanh Dam Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Ha Noi, 334 Nguyen Trai, Thanh Xuan District, Ha Noi, Viet Nam https://orcid.org/0000-0001-5077-5793
  • Pham Hung Viet Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, Ha Noi, 334 Nguyen Trai, Thanh Xuan District, Ha Noi, Viet Nam
  • Duong Hong Anh Research Centre for Environmental Technology and Sustainable Development (CETASD), University of Science, Vietnam National University, Ha Noi, 334 Nguyen Trai, Thanh Xuan District, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/19196

Keywords:

paper-making village, groundwater, perfluoroalkyl substances, PFCAs, PFSAs

Abstract

Paper-making is one of the potential sources of PFASs contamination in groundwater because the collection and treatment of sewage from paper-making activities have not been controlled effectively. For this reason, in this study, 12 PFASs in groundwater were analyzed during the dry season (n = 18) and the rainy season (n = 22) in Phong Khe (Bac Ninh), the largest paper-making village in Northern Vietnam. The results showed that the total PFAS concentrations ranged from non-detectable levels to 15.06 ng/L during the dry season and from non-detectable levels to 9.92 ng/L during the rainy season. Short-chain PFASs (C < 9) were more commonly detected in groundwater compared to long-chain PFASs. While perfluorohexane sulfonic acid (PFHxS) and perfluorooctanesulfonic acid (PFOS) were predominant in groundwater samples during the dry season, perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA), and perfluoroheptanoic acid (PFHpA) contributed significantly to the composition of PFASs during the rainy season. Although these PFASs have not posed a health risk through groundwater consumption, future research is needed to investigate further the levels and distribution of these compounds in different environmental compartments within other potential craft villages.

Downloads

Download data is not yet available.

References

Buck R. C., Franklin J., Berger U., Conder J. M., Cousins I. T., de Voogt P., Jensen A. A., Kannan K., Mabury S. A., van Leeuwen S. P. J. - Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integr. Environ. Assess. Manage., 7 (4) (2011) 513-541. https://doi.org/10.1002/ieam.258.

Lindstrom A. B., Strynar M. J., Libelo E. L. - Polyfluorinated Compounds: Past, Present, and Future. Environ. Sci. Technol., 45 (19) (2011) 7954-7961. https://doi.org/10.1021/es2011622.

Prevedouros K., Cousins I. T., Buck R. C., Korzeniowski S. H. - Sources, Fate and Transport of Perfluorocarboxylates. Environ. Sci. Technol., 40 (1) (2006) 32-44. https://doi.org/10.1021/es0512475.

Rahman M. F., Peldszus S., Anderson W. B. - Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: A review. Water Res., 50 (2014) 318-340. https://doi.org/10.1016/j.watres.2013.10.045.

Kunacheva C., Fujii S., Tanaka S., Seneviratne S. T. M. L. D., Lien N. P. H., Nozoe M., Kimura K., Shivakoti B. R., Harada H. - Worldwide surveys of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in water environment in recent years. Water Sci. Technol., 66 (12) (2012) 2764-2771. https://doi.org/10.2166/wst.2012.518.

Hu X. C., Andrews D. Q., Lindstrom A. B., Bruton T. A., Schaider L. A., Grandjean P., Lohmann R., Carignan C. C., Blum A., Balan S. A., Higgins C. P., Sunderland E. M. - Detection of Poly- and Perfluoroalkyl Substances (PFASs) in U.S. Drinking Water Linked to Industrial Sites, Military Fire Training Areas, and Wastewater Treatment Plants. Environ. Sci. Technol. Lett., 3 (10) (2016) 344-350. https://doi.org/10.1021/acs.estlett.6b00260.

Bao J., Liu W., Liu L., Jin Y., Dai J., Ran X., Zhang Z., Tsuda S. - Perfluorinated Compounds in the Environment and the Blood of Residents Living near Fluorochemical Plants in Fuxin, China. Environ. Sci. Technol., 45 (19) (2011) 8075-8080. https://doi.org/10.1021/es102610x.

Forster A. L. B., Zhang Y., Westerman D. C., Richardson S. D. - Improved total organic fluorine methods for more comprehensive measurement of PFAS in industrial wastewater, river water, and air. Water Res., 235 (2023) 119859. https://doi.org/10.1016/j.watres.2023.119859.

Lam N. H., Cho C.-R., Kannan K., Cho H.-S. - A nationwide survey of perfluorinated alkyl substances in waters, sediment and biota collected from aquatic environment in Vietnam: Distributions and bioconcentration profiles. J. Hazard. Mater., 323 (2017) 116-127. https://doi.org/10.1016/j.jhazmat.2016.04.010.

Coperchini F., Awwad O., Rotondi M., Santini F., Imbriani M., Chiovato L. - Thyroid disruption by perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA). J. Endocrinol. Invest., 40 (2) (2017) 105-121. https://doi.org/10.1007/s40618-016-0572-z.

Apelberg Benjamin J., Witter Frank R., Herbstman Julie B., Calafat Antonia M., Halden Rolf U., Needham Larry L., Goldman Lynn R. - Cord Serum Concentrations of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) in Relation to Weight and Size at Birth. Environ. Health Perspect., 115 (11) (2007) 1670-1676. https://doi.org/10.1289/ehp.10334.

Stockholm Convention. - All POPs listed in the Stockholm Convention. https://chm.pops.int/TheConvention/ThePOPs/ListingofPOPs/tabid/2509/Default.aspx.

Kiefer K., Du L., Singer H., Hollender J. - Identification of LC-HRMS nontarget signals in groundwater after source related prioritization. Water Res., 196 (2021) 116994. https://doi.org/10.1016/j.watres.2021.116994.

Albergamo V., Schollée J. E., Schymanski E. L., Helmus R., Timmer H., Hollender J., de Voogt P. - Nontarget Screening Reveals Time Trends of Polar Micropollutants in a Riverbank Filtration System. Environ. Sci. Technol., 53 (13) (2019) 7584-7594. https://doi.org/10.1021/acs.est.9b01750.

Kurwadkar S., Dane J., Kanel S. R., Nadagouda M. N., Cawdrey R. W., Ambade B., Struckhoff G. C., Wilkin R. - Per- and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution. Sci. Total Environ., 809 (2022) 151003. https://doi.org/10.1016/j.scitotenv.2021.151003.

Phung T. V., Nguyen T. N., Phan Thi L.-A., Pham H. V., Duong H. A. - Determination of Per- and Polyfluoroalkyl Substances in Craft Villages and Industrial Environments of Vietnam. J. Anal. Methods Chem., 2021 (2021) 5564994. https://doi.org/10.1155/2021/5564994.

ISO 5667-11:2009. - Water quality - Sampling - Part 11: Guidance on sampling of groundwaters, (2011).

ISO 25101:2009. - Water quality - Determination of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) - Method for unfiltered samples using solid phase extraction and liquid chromatography/mass spectrometry, (2009).

Vi P. T., Ngoc N. T., Quang P. D., Dam N. T., Tue N. M., Tuyen L. H., Viet P. H., Anh D. H. - Perfluoroalkyl substances in freshwater and marine fish from northern Vietnam: Accumulation levels, profiles, and implications for human consumption. Mar. Pollut. Bull., 182 (2022) 113995. https://doi.org/10.1016/j.marpolbul.2022.113995.

U.S. EPA. - Health Effects Support Document for Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA), USA, 2016.

Chen S., Jiao X.-C., Gai N., Li X.-J., Wang X.-C., Lu G.-H., Piao H.-T., Rao Z., Yang Y.-L. - Perfluorinated compounds in soil, surface water, and groundwater from rural areas in eastern China. Environ. Pollut., 211 (2016) 124-131. https://doi.org/10.1016/j.envpol.2015.12.024.

U.S. EPA. - Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS), USA, (2016).

U.S. EPA. - Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA), USA, (2016).

Wang S., Cai Y., Ma L., Lin X., Li Q., Li Y., Wang X. - Perfluoroalkyl substances in water, sediment, and fish from a subtropical river of China: Environmental behaviors and potential risk. Chemosphere, 288 (2022) 132513. https://doi.org/10.1016/j.chemosphere.2021.132513.

Li F., Duan J., Tian S., Ji H., Zhu Y., Wei Z., Zhao D. - Short-chain per- and polyfluoroalkyl substances in aquatic systems: Occurrence, impacts and treatment. Chem. Eng. J., 380 (2020) 122506. https://doi.org/10.1016/j.cej.2019.122506.

Duong H. T., Kadokami K., Shirasaka H., Hidaka R., Chau H. T. C., Kong L., Nguyen T. Q., Nguyen T. T. - Occurrence of perfluoroalkyl acids in environmental waters in Vietnam. Chemosphere, 122 (2015) 115-124. https://doi.org/10.1016/j.chemosphere.2014.11.023.

Sharma B. M., Bharat G. K., Tayal S., Larssen T., Bečanová J., Karásková P., Whitehead P. G., Futter M. N., Butterfield D., Nizzetto L. - Perfluoroalkyl substances (PFAS) in river and ground/drinking water of the Ganges River basin: Emissions and implications for human exposure. Environ. Pollut., 208 (2016) 704-713. https://doi.org/10.1016/j.envpol.2015.10.050.

Cao X., Wang C., Lu Y., Zhang M., Khan K., Song S., Wang P., Wang C. - Occurrence, sources and health risk of polyfluoroalkyl substances (PFASs) in soil, water and sediment from a drinking water source area. Ecotoxicol. Environ. Saf., 174 (2019) 208-217. https://doi.org/10.1016/j.ecoenv.2019.02.058.

Sammut G., Sinagra E., Sapiano M., Helmus R., de Voogt P. - Perfluoroalkyl substances in the Maltese environment – (II) sediments, soils and groundwater. Sci. Total Environ., 682 (2019) 180-189. https://doi.org/10.1016/j.scitotenv.2019.04.403.

Munoz G., Labadie P., Botta F., Lestremau F., Lopez B., Geneste E., Pardon P., Dévier M.-H., Budzinski H. - Occurrence survey and spatial distribution of perfluoroalkyl and polyfluoroalkyl surfactants in groundwater, surface water, and sediments from tropical environments. Sci. Total Environ., 607-608 (2017) 243-252. https://doi.org/10.1016/j.scitotenv.2017.06.146.

Szabo D., Coggan T. L., Robson T. C., Currell M., Clarke B. O. - Investigating recycled water use as a diffuse source of per- and polyfluoroalkyl substances (PFASs) to groundwater in Melbourne, Australia. Sci. Total Environ., 644 (2018) 1409-1417. https://doi.org/10.1016/j.scitotenv.2018.07.048.

Yong Z. Y., Kim K. Y., Oh J.E. - The occurrence and distributions of per- and polyfluoroalkyl substances (PFAS) in groundwater after a PFAS leakage incident in 2018. Environ. Pollut., 268 (2021) 115395. https://doi.org/10.1016/j.envpol.2020.115395.

Hongkachok C., Boontanon S. K., Boontanon N., Sukeesan S., Polprasert C., Fujii S. - Per- and polyfluoroalkyl substances in groundwater in Thailand: occurrence, source identification and spatial distribution. Int. J. Environ. Sci. Technol., 20 (2023) 12437–12448. https://doi.org/10.1007/s13762-023-04894-w.

Lu G.-H., Jiao X.-C., Piao H.-T., Wang X.-C., Chen S., Tan K.-Y., Gai N., Yin X.-C., Yang Y.-L., Pan J. - The Extent of the Impact of a Fluorochemical Industrial Park in Eastern China on Adjacent Rural Areas. Arch. Environ. Contam. Toxicol., 74 (3) (2018) 484-491. https://doi.org/10.1007/s00244-017-0458-x.

Kuroda K., Murakami M., Oguma K., Takada H., Takizawa S. - Investigating sources and pathways of perfluoroalkyl acids (PFAAs) in aquifers in Tokyo using multiple tracers. Sci. Total Environ., 488-489 (2014) 51-60. https://doi.org/10.1016/j.scitotenv.2014.04.066.

Post G. B., Louis J. B., Lippincott R. L., Procopio N. A. - Occurrence of Perfluorinated Compounds in Raw Water from New Jersey Public Drinking Water Systems. Environ. Sci. Technol., 47 (23) (2013) 13266-13275. https://doi.org/10.1021/es402884x.

Sadia M., Nollen I., Helmus R., ter Laak T. L., Béen F., Praetorius A., van Wezel A. P. - Occurrence, Fate, and Related Health Risks of PFAS in Raw and Produced Drinking Water. Environ. Sci. Technol., 57 (8) (2023) 3062-3074. https://doi.org/10.1021/acs.est.2c06015.

Hoang A. Q., Tran T. L., Tuyen L. H., Nguyen T. A. H., Pham D. M., Nguyen T. C., Nguyen T. N., Phan D. Q., Nguyen M. K., Tran V. Q., Pham C. T., Do Bui Q., Nguyen T. Q. H. - Perfluoroalkyl substances in food contact materials: preliminary investigation in Vietnam and global comparison. Environ. Sci. Pollut. Res., 30 (2023) 104181–104193. https://10.1007/s11356-023-29746-5.

Langberg H. A., Arp H. P. H., Breedveld G. D., Slinde G. A., Høiseter Å., Grønning H. M., Jartun M., Rundberget T., Jenssen B. M., Hale S. E. - Paper product production identified as the main source of per- and polyfluoroalkyl substances (PFAS) in a Norwegian lake: Source and historic emission tracking. Environ. Pollut., 273 (2021) 116259. https://doi.org/10.1016/j.envpol.2020.116259.

OECD - PFASs and Alternatives in Food Packaging (Paper and Paperboard) Report on the Commercial Availability and Current Uses. OECD Series on Risk Management, No. 58 (2020).

Simcik M. F., Dorweiler K. J. - Ratio of Perfluorochemical Concentrations as a Tracer of Atmospheric Deposition to Surface Waters. Environ. Sci. Technol., 39 (22) (2005) 8678-8683. https://doi.org/10.1021/es0511218.

Pfotenhauer D., Sellers E., Olson M., Praedel K., Shafer M. - PFAS concentrations and deposition in precipitation: An intensive 5-month study at National Atmospheric Deposition Program – National trends sites (NADP-NTN) across Wisconsin, USA. Atmos. Environ., 291 (2022) 119368. https://doi.org/10.1016/j.atmosenv.2022.119368.

Olney S., Jones M., Rockwell C., Collins R. D., Bryant J. D., Occhialini J. - Influence of convective and stratiform precipitation types on per- and polyfluoroalkyl substance concentrations in rain. Sci. Total Environ., 890 (2023) 164051. https://doi.org/10.1016/j.scitotenv.2023.164051.

Kwok K. Y., Taniyasu S., Yeung L. W. Y., Murphy M. B., Lam P. K. S., Horii Y., Kannan K., Petrick G., Sinha R. K., Yamashita N. - Flux of Perfluorinated Chemicals through Wet Deposition in Japan, the United States, And Several Other Countries. Environ. Sci. Technol., 44 (18) (2010) 7043-7049. https://doi.org/10.1021/es101170c.

Wei C., Wang Q., Song X., Chen X., Fan R., Ding D., Liu Y. - Distribution, source identification and health risk assessment of PFASs and two PFOS alternatives in groundwater from non-industrial areas. Ecotoxicol. Environ. Saf., 152 (2018) 141-150. https://doi.org/10.1016/j.ecoenv.2018.01.039.

Qi Y., Huo S., Hu S., Xi B., Su J., Tang Z. - Identification, characterization, and human health risk assessment of perfluorinated compounds in groundwater from a suburb of Tianjin, China. Environ. Earth Sci., 75 (5) (2016) 432. https://10.1007/s12665-016-5415-x.

Downloads

Published

28-02-2025

How to Cite

[1]
P. Thi Vi, N. Thuy Ngoc, N. Thanh Dam, P. Hung Viet, and D. Hong Anh, “Levels, profiles, and distribution of perfluoroalkyl substances (PFASs) in groundwater in Bac Ninh province, Viet Nam”, Vietnam J. Sci. Technol., vol. 63, no. 1, pp. 123–137, Feb. 2025.

Issue

Section

Environment