Intuitive data and image analysis about the microstructure of the liquid alumina system#
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/19166Keywords:
Alumina Al2O3, the local environment, MD simulationAbstract
The models of the Al2O3 system in a liquid state over broad ranges of pressure from 0 to 100 GPa are built by molecular dynamics simulation (MDs). This research gives useful knowledge about the microstructural properties of liquid alumina systems through insight 3D visualization. Intuitive data and image analysis methods are applied to clarify the network structure, the local environment of Al and O atoms, and the linkage among the polyhedra in the network structure of the Al2O3 system at different pressure. The structural compaction mechanism of Al2O3 oxides under high pressure is also discussed in this paper.
Downloads
References
1. Roel P. - On the structure of γ-Al2O3, J. Catal. 392 (2020) 336-346. https://doi.org/ 10.1016/j.jcat.2020.10.010
2. Libor K., Mark B., János S. - High-temperature transition aluminas in δ-Al2O3/θ-Al2O3 stability range: Review, J. Catal. 393 (2021) 357-368. https://doi.org/10.1016/ j.jcat.2020.10.009
3. Lawrie B. S., Adrian C. B., Philip S. S., Louis H., Henry E. F., Chris J. B., Shinji K., Richard W. J. K., Aleksei B., Martin C. W., et al. - Joint diffraction and modeling approach to the structure of liquid alumina, Phys. Rev. B 87 (2013) 024201. https://doi.org/10.1103/PhysRevB.87.024201
4. Caracas.R and Cohen R.E. - Prediction of a new phase transition in Al2O3 at high pressures, Geophysical Research Letter 32 (2005) L06303. https://doi.org/ 10.1029/2004GL022204.
5. Artem R. O. and Shigeaki O. - The high-pressure phase of alumina and implications for Earth’s D’’ layer, PNAS 102 (2005) 10828-10831. https://doi.org/10.1073/ pnas.0501800102
6. Perevalov T. V., Gritsenko V. A., and Kaichev V. V. - Electronic structure of aluminum oxide: ab initio simulations of α and γ phases and comparison with experiment for amorphous films, Eur. Phys. J. Appl. Phys. 52 (2010) 30501.https://doi.org/10.1051 /epjap/2010159
7. Ansell S. - Structure of Liquid Aluminum Oxide, Phys. Rev. Lett. 78 (3) (1997) 464-466. https://doi.org/10.1103/PhysRevLett.78.464
8. Lampartera P., Kniep R. - Structure of amorphous Al2O3, Physica B Condens, Matter. 234-236 (1997) 405-406. https://doi.org/10.1016/S0921-4526(96)01044-7
9. Landron C., Hennet L., Jenkins T. E., Greaves G. N., Coutures J. P., and Soper A. K. - Liquid Alumina: Detailed Atomic Coordination Determined from Neutron Diffraction Data Using Empirical Potential Structure Refinement, Phys. Rev. Lett. 86 (21) (2001) 4839-4842. https://doi.org/10.1103/PhysRevLett.86.4839
10. Caijuan S., Oliver L. G. A., Diana B., Jincheng D., Joerg N., Anthony T., Richard W. J. K., Jinglin Y. and Chris J. B. - The Structure of Amorphous and Deeply Supercooled Liquid Alumina, fmats. 6 (2019) 1-15. https://doi.org/10.3389/fmats.2019.00038.
11. Sung K. L., Sung B. L., Sun Y. P., Yoo S. Y., and Chi W. A. - Structure of Amorphous Aluminum Oxide, PRL. 103 (2009) 095501.https://doi.org/10.1103/PhysRevLett. 103.095501.
12. Deng H., Fangming L., Shixue G., Duanwei H. - High-pressure work hardening of alumina, Ceram. Int. 47 (2021) 19989-19994. https://doi.org/ 10.1016/j.ceramint. 2021.04.009.
13. Zhongwu W., Huahai M., Saxenaa S.K. - The melting of corundum (Al2O3) under high pressure conditions, J. Alloys Compd. 299 (2000) 287-291. https://doi.org/10.1016/ S0925-8388(99)00794-X
14. Rajeev A., Belonoshko A. B. and Bo¨rje J. - Melting and liquid structure of aluminum oxide using a molecular-dynamics simulation, Phys Rev E 57(2) (1998) 1673-1676. https://doi.org/10.1103/PhysRevE.57.1673
15. Vashishta P., Kalia R. K., Nakano A., et al. - Interaction potentials for alumina and molecular dynamics simulations of amorphous and liquid alumina, J. Appl. Phys. 103 (2008) 083504. https://doi.org/10.1063/1.2901171
16. Gonzalo G., Belonoshko A. B., Rajeev A., and Bo¨rje J. - Structural properties of liquid Al2O3: a molecular dynamics study, Phys. Rev. E 61 (3) (2000) 2723-2729. https://doi.org/10.1103/PhysRevE.61.2723
17. Hoang V. V. - About an order of liquid–liquid phase transition in simulated liquid Al2O3, Phys Lett. A 335 (2005) 439-443. https://doi.org/10.1016/j.physleta.2004.12.040
18. Hemmati M. - Structure of liquid Al2O3 from a computer simulation model, J. Phys. Chem. B 103 (1999) 4023-4028. https://pubs.acs.org/doi/abs/10.1021/jp983529f
19. Jahn S., Madden P. A. - Structure and dynamics in liquid alumina: simulations with an ab initio interaction potential, J. Non-Cryst Solids 353 (32 - 40) (2007) 3500-3504. https://doi.org/10.1016/j.jnoncrysol.2007.05.104
20. Kien P. H., An P. M., and Trang G. T. T. - The structural transition under compression and correlation between structural and dynamical heterogeneity for liquid Al2O3, Int. J. Mod. Phys. B 33 (31) (2019) 1950380. 20. https://doi.org/10.1142/S0217979219503806
21. Kien P. H., Nhu T. T. Q., Trang G. T. T. - Characterization of Structural Transition and Heterogeneity under Compression for Liquid Al2O3 Using Molecular Dynamics Simulation, HIJ. 3 (2) (2022). 21. https://hightechjournal.org/index.php/HIJ/article/view/215
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.