VEHICLE DETECTION FOR NIGHTTIME USING MONOCULAR IR CAMERA WITH DISCRIMINATELY TRAINED MIXTURE OF DEFORMABLE PART MODELS
Author affiliations
DOI:
https://doi.org/10.15625/0866-708X/49/5/1891Abstract
Vehicle detection at night time is a challenging problem due to low visibility and light distortion caused by motion and illumination in urban environments. This paper presents a method based on the deformable object model for detecting and classifying vehicles using monocular infra-red camera. In proposed method, features of vehicles are learned as a deformable object model through the combination of a latent support vector machine (LSVM) and histograms of oriented gradients (HOG). The proposed detection algorithm is flexible enough in detecting various types and orientations of vehicles as it can effectively integrate both global and local information of vehicle textures and shapes. Experimental results prove the effectiveness of the algorithm for detecting close and medium range vehicles in urban scenes at night time.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.