Aqueous synthesis of highly luminescent AgInSe2/ZnS core/shell nanocrystals

Tran Thi Thu Huong, Nguyen Thi Hiep, Nguyen Thu Loan, Le Van Long, Nguyen Thanh Tung, Ung Thi Dieu Thuy, Peter Reiss, Jae Yup Kim, Nguyen Quang Liem
Author affiliations

Authors

  • Tran Thi Thu Huong Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam https://orcid.org/0009-0008-3094-173X
  • Nguyen Thi Hiep Institute of Research and Development, Duy Tan University, Da Nang City, Viet Nam https://orcid.org/0000-0003-3089-7237
  • Nguyen Thu Loan Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Le Van Long Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Nguyen Thanh Tung Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam https://orcid.org/0000-0003-0232-7261
  • Ung Thi Dieu Thuy Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam https://orcid.org/0000-0003-0877-2753
  • Peter Reiss University of Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, STEP, 38000 Grenoble, France https://orcid.org/0000-0002-9563-238X
  • Jae Yup Kim Department of Chemical Engineering, Dankook University, Yongin, 16890, Republic of Korea
  • Nguyen Quang Liem Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/18628

Keywords:

AgInSe2, AgInSe2/ZnS core/shell nanocrystals, water-soluble, photoluminescence

Abstract

Ternary I-III-VI chalcopyrite-type nanocrystals (NCs) range among the most important alternative materials to Cd-based NCs. Within this materials family, AgInSe2 (AISe) presents a narrower bandgap than widely studied AgInS2 (AIS), making it more suitable for numerous applications. At present, it remains a long-standing challenge to directly synthesize high-quality AISe core and AISe/ZnS core/shell NCs in aqueous solution at atmospheric pressure. In this work, we describe their synthesis using glutathione and citric acid as dual stabilizers. First, to form AISe core NCs, the Se precursor is injected into a solution containing the Ag and In complexes at 96 °C for 20 min. In the second step, the AISe/ZnS core/shell structure is created by growing the ZnS shell on the AISe NCs surface at 90 °C for 60 min. The synthesized AISe and AISe/ZnS core/shell NCs are characterized using X-ray diffraction, transmission electron microscopy, and UV-Vis absorption and photoluminescence for optical spectroscopies. After the growth of the ZnS shell, AISe/ZnS core/shell NCs exhibit higher photostability and emit intense luminescence at a wavelength of 680 nm with an impressive quantum yield (QY) of 30 %, which represents a threefold higher than the AISe core NCs. These properties make the aqueous soluble AISe/ZnS core/shell NCs favorable candidates for lighting, displays, and biological imaging applications.

Downloads

Download data is not yet available.

References

May B. M., Bambo M. F., Hosseini S. S., Sidwaba U., Nxumalo E. N., and Mishra A. K. - A review on I–III–VI ternary quantum dots for fluorescence detection of heavy metals ions in water: optical properties, synthesis and application, RSC Adv. 12 (2022) 11216-32.

Jain S., Bharti S., Bhullar G. K., and Tripathi S. K. - I-III-VI core/shell QDs: Synthesis, characterizations and applications, J. Lumin. 219 (2020) 116912.

Moodelly D., Kowalik P., Bujak P., Pron A., and Reiss P. - Synthesis, photophysical properties and surface chemistry of chalcopyrite-type semiconductor nanocrystals, J. Mater. Chem. C 7 (2019) 11665-11709.

Li L., Daou T. J., Texier I., Tran T. K. C., Nguyen Q. L., and Reiss P. - Highly Luminescent CuInS2/ZnS Core/Shell Nanocrystals: Cadmium-Free Quantum Dots for In Vivo Imaging, Chem. Mater. 21 (2009) 2422-2429.

Islas-Rodriguez N., Muñoz R., Rodriguez J. A., Vazquez-Garcia R. A., and Reyes M. - Integration of ternary I-III-VI quantum dots in light-emitting diodes, Front. Chem. 11 (2023) 1106778.

Hong S. P., Park H. K., Oh J. H., Yang H., and Do Y. R. - Comparisons of the structural and optical properties of o-AgInS2, t-AgInS2, and c-AgIn5S8 nanocrystals and their solid-solution nanocrystals with ZnS, J. Mater. Chem. 22 (2012) 18939-49.

Song W. S. and Yang H. - Efficient white-light-emitting diodes fabricated from highly fluorescent copper indium sulfide core/shell quantum dots, Chem. Mater. 24 (2012) 1961-7.

Oluwafemi O. S., May B. M. M., Parani S., and Tsolekile N. - Facile, large scale synthesis of water soluble AgInSe2/ZnSe quantum dots and its cell viability assessment on different cell lines, Mater. Sci. Eng. C 106 (2020) 110181.

Uematsu T., Wajima K., Sharma D. K., Hirata S., Yamamoto T., Kameyama T., Vacha M., Torimoto T., and Kuwabata S. - Narrow band-edge photoluminescence from AgInS2 semiconductor nanoparticles by the formation of amorphous III–VI semiconductor shells, NPG Asia Mater. 10 (2018) 713-26.

Huong T. T. T., Loan N. T., Ung T. D. T., Tung N. T., Han H., and Liem N. Q. - Systematic synthesis of different-sized AgInS2/GaSx nanocrystals for emitting the strong and narrow excitonic luminescence, Nanotechnology 33 (2022) 355704.

Huong T. T. T., Loan N. T., Van Long L., Phong T. D., Ung Thi Dieu T., and Liem N. Q. - Highly luminescent air-stable AgInS2/ZnS core/shell nanocrystals for grow lights, Opt. Mater. (Amst). 130 (2022) 112564.

Loan N. T., Huong T. T. T., Luong M. A., Han H., Ung T. D. T., and Liem N. Q. - Double-shelling AgInS2 nanocrystals with GaSx/ZnS to make them emit bright and stable excitonic luminescence, Nanotechnology 34 (2023) 315601.

Sanmartín-Matalobos J., Bermejo-Barrera P., Aboal-Somoza M., Fondo M., García-Deibe A. M., Corredoira-Vázquez J., and Alves-Iglesias Y. - Semiconductor Quantum Dots as Target Analytes: Properties, Surface Chemistry and Detection, Nanomaterials 12 (2022) 2501.

Yarema O., Yarema M., Bozyigit D., Lin W. M. M., and Wood V. - Independent composition and size control for highly luminescent indium-rich silver indium selenide nanocrystals, ACS Nano 9 (2015) 11134-42.

Huong T. T. T., Hiep N. T., Loan N. T., Han H., Thao N. T., Thuy U. T. D., and Liem N. Q. - Improved stability and luminescent efficiency of AgInSe2 nanocrystals by shelling with ZnS, Adv. Nat. Sci. Nanosci. Nanotechnol. 14 (2023) 25017.

Kang X., Yang Y., Huang L., Tao Y., Wang L., and Pan D. - Large-scale synthesis of water-soluble CuInSe 2/ZnS and AgInSe 2/ZnS core/shell quantum dots, Green Chem. 17 (2015) 4482-8.

Raievska O., Stroyuk O., Dzhagan V., Solonenko D., and Zahn D. R. T. - Ultra-small aqueous glutathione-capped Ag–In–Se quantum dots: luminescence and vibrational properties, RSC Adv. 10 (2020) 42178-93.

Mattera L., Bhuckory S., Wegner K. D., Qiu X., Agnese F., Lincheneau C, Senden T, Djurado D, Charbonniere L J, Hildebrandt N, Reiss P. - Compact quantum dot-antibody conjugates for FRET immunoassays with subnanomolar detection limits, Nanoscale 8 (2016) 11275-11283.

Rivaux C, Akdas T, Yadav R, El-Dahshan O, Moodelly D, Ling W L, Aldakov D and Reiss P. - Continuous Flow Aqueous Synthesis of Highly Luminescent AgInS2 and AgInS2/ZnS Quantum Dots, J. Phys. Chem. C 126 (2022) 20524-20534.

Yarema O., Yarema M., and Wood V. - Tuning the composition of multicomponent semiconductor nanocrystals: The case of I–III–VI materials, Chem. Mater. 30 (2018) 1446-61.

Dhamo L., Wegner K. D., Würth C., Häusler I., Hodoroaba V. D., Ute R. G. - Assessing the influence of microwave‑assisted synthesis parameters and stabilizing ligands on the optical properties of AIS/ZnS quantum dots, Scientifc Reports 12 (2022) 22000.

Xue T., Shi Y., Guo J., Guo M., and Yan Y. - Preparation of AgInS2 quantum dots and their application for Pb2+ detection based on fluorescence quenching effect, Vacuum 193 (2021) 110514.

Xiong W. W., Yang G. H., Wu X. C., and Zhu J. J. - Microwave-assisted synthesis of highly luminescent AgInS 2/ZnS nanocrystals for dynamic intracellular Cu (ii) detection, J. Mater. Chem. B 1 (2013) 4160-5.

Kang X., Yang Y., Huang L., Tao Y., Wang L., and Pan D. - Large-scale synthesis of water-soluble CuInSe2/ZnS and AgInSe2/ZnS core/shell quantum dots, Green Chem. 17 (2015) 4482-8.

Che D., Zhu X., Wang H., Duan Y., Zhang Q., and Li Y. - Aqueous synthesis of high bright and tunable near-infrared AgInSe2–ZnSe quantum dots for bioimaging, J. Colloid Interface Sci. 463 (2016) 1-7.

Pei-Ni L., Anil V. G., Jia-Yaw C. - Direct aqueous synthesis of quantum dots for high-performance AgInSe2 quantum-dot-sensitized solar cell, Journal of Power Sources 354 (2017) 100-107.

Yang Y., Liu Y., Mao B., Luo B., Zhang K., Wei W., Kang Z., Shi W., Yuan S. - Facile Surface Engineering of Ag–In–Zn–S Quantum Dot Photocatalysts by Mixed-Ligand Passivation with Improved Charge Carrier Lifetime, Catal. Lett. 149 (2019) 1800-1812.

Wang K., Liang Z., Li J., Xu X., Cheng X., Jin H., Xu D., and Xu G. - Formation and photoluminescence properties of colloidal ZnCuIn(SexS1 2 x)2/ZnS nanocrystals with gradient composition, J. Mater. Sci. 54 (2019) 2037-2048.

Priyanka U. L., Sachin D., Sunit R., Nandu C., Bharat K. - A Novel combined thermal evaporation and solvothermal approach to produce highly crystalline and compact CIG(S1-xSex)2 thin films, Applied Materials Today 35 (2023) 101932.

Deng D., Qu L., and Gu Y. - Near-infrared broadly emissive AgInSe2/ZnS quantum dots for biomedical optical imaging, J. Mater. Chem. C 2 (2014) 7077-85.

Ncapayi V., Ninan N., Lebepe T. C., Parani S., Girija A. R., Bright R., Vasilev K., Maluleke R., Tsolekile N., Kodama T., and Oluwafemi O. S. - Diagnosis of Prostate Cancer and Prostatitis Using near Infra-Red Fluorescent AgInSe/ZnS Quantum Dots, Int. J. Mol. Sci. 22 (2021) 12514.

Downloads

Published

19-04-2024

How to Cite

[1]
T. Thi Thu Huong, “Aqueous synthesis of highly luminescent AgInSe2/ZnS core/shell nanocrystals”, Vietnam J. Sci. Technol., vol. 62, no. 2, pp. 288–298, Apr. 2024.

Issue

Section

Materials