Effect of rice husk morphology on the ability to synthesize silicon carbide by pyrolysis method
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/18511Keywords:
Silicon Carbide, rice husk, pyrolysis, SiC/SiO2/C compositeAbstract
Silicon carbide (SiC) is a mineral with good technical properties and high economic value. However, the synthesis of SiC is expensive because it is synthesized at a high-temperature environment (above 1500oC). The synthesis of SiC from biomass can significantly reduce the synthesis temperature. One commonly used biomass material for synthesizing SiC is rice husk. However, the ability to synthesize SiC depends on the shape of the rice husk. The influence of the morphology of rice husk on the ability to synthesize SiC was studied in this study. Experimental results showed that the original rice husk would give better SiC formation capacity than the rice husk powder. The amount of SiC formed using the original rice husk when impregnated by sodium silicate solution and pyrolysis at 1200oC is 18.3% (wt%.). With rice husk powder, it is 15.12% (wt%.). The results of analysis of the mineral composition, functional groups, and morphologies by X-ray diffraction (XRD), Fourier Infrared Transform Method (FT-IR), and Scanning Electron Microscopy (SEM) found that the polymorphy of SiC is α-SiC and β-SiC. These minerals are the basis for SiC from rice husks, which can be applied as wear-resistant materials.
Downloads
References
Neudeck P. G. - Progress in silicon carbide semiconductor electronics technology, J. Electron. Mater., 24 (1995) 283-288.https://doi.org/10.1007/BF02659688 DOI: https://doi.org/10.1007/BF02659688
Kong X., Nie R., and Yuan J. - Shape stabilized three-dimensional porous SiC-based phase change materials for thermal management of electronic components, Chem. Eng. J., 462 (2023) 142168. https://doi.org/10.1016/j.cej.2023.142168 DOI: https://doi.org/10.1016/j.cej.2023.142168
Singh S., Chaudhary T., and Khanna G. - Recent advancements in wide band semiconductors (SiC and GaN) technology for future devices, Silicon, 14(11) (2022) 5793-5800, 2022. https://doi.org/10.1007/s12633-021-01362-3 DOI: https://doi.org/10.1007/s12633-021-01362-3
Alves L. F. S, Gomes R. C. M., Lefranc P., Pegado R. D. A., Jeannin P. O. Luciano B. A., and Rocha F. V. - SIC power devices in power electronics: An overview, Brazilian Power Electronics Conference (COBEP), Barzil, 2017, pp. 1-8. https://doi.org/10.1109/COBEP.2017.8257396 DOI: https://doi.org/10.1109/COBEP.2017.8257396
Edmond J. A., Kong H. S., and Carter Jr C. H. - Blue LEDs, UV photodiodes and high-temperature rectifiers in 6H-SiC, Phys. B (Amsterdam, Neth.), 185(1-4) (1993) 453-460. https://doi.org/10.1016/0921-4526(93)90277-D DOI: https://doi.org/10.1016/0921-4526(93)90277-D
Feng D. H., Jia T. Q., Li X. X., Xu Z. Z., Chen J., Deng S. Z., Wu Z. S., and Xu N. S. - Catalytic synthesis and photoluminescence of needle-shaped 3C–SiC nanowires, Solid State Commun., 128(8) (2003) 295-297. https://doi.org/10.1016/j.ssc.2003.08.025 DOI: https://doi.org/10.1016/j.ssc.2003.08.025
J. Edmond J., Abare A., Berman M., Bharathan J., Bunker K. L., Emerson D., Haberern K., Ibbetson J., Leung M., Russel P., and Slater D. - High efficiency GaN-based LEDs and lasers on SiC, J. Cryst. Growth, 272(1-4) (2004) 242-250. https://doi.org/10.1016/j.jcrysgro.2004.08.056 DOI: https://doi.org/10.1016/j.jcrysgro.2004.08.056
Ni Z., Lyu X., Yadav O. P., Singh B. N., Zheng S., and Cao D. - Overview of real-time lifetime prediction and extension for SiC power converters, IEEE T. Power Electr., 35(8) (2019) 7765-7794. https://doi.org/10.1109/TPEL.2019.2962503 DOI: https://doi.org/10.1109/TPEL.2019.2962503
Louro P., Vieira M., Fernandes M., Costa J., Vieira M. A., Caeiro J., Neves N., and Barata M. - Optical demultiplexer based on an a‐SiC: H voltage controlled device, Phys. Status Solidi C, 7(3‐4) (2010) 1188-1191. https://doi.org/10.1002/pssc.200982702 DOI: https://doi.org/10.1002/pssc.200982702
Prasad K. E. and Ramesh K. - Hardness and mechanical anisotropy of hexagonal SiC single crystal polytypes, J. Alloys Compd., 770 (2019) 158-165. https://doi.org/10.1016/j.jallcom.2018.08.102 DOI: https://doi.org/10.1016/j.jallcom.2018.08.102
Su L., Wang H., Niu M., Fan X., Ma M., Shi Z., and GUo S. W. - Ultralight, recoverable, and high-temperature-resistant SiC nanowire aerogel, ACS nano, 12(4) (2018) 3103-3111. https://doi.org/10.1021/acsnano.7b08577 DOI: https://doi.org/10.1021/acsnano.7b08577
Wang H. F., Bi Y. B., Zhou N. S., and Zhang H. J. - Preparation and strength of SiC refractories within situ β-SiC whiskers as bonding phase, Ceram. Int., 42(1) (2016) 727-733. https://doi.org/10.1016/j.ceramint.2015.08.172 DOI: https://doi.org/10.1016/j.ceramint.2015.08.172
Borrero-López O., Ortiz A. L., Guiberteau F. , and Padture N. P. - Microstructural design of sliding-wear-resistant liquid-phase-sintered SiC: an overview, J. Eur. Ceram. Soc., 27(11) (2007) 3351-3357. https://doi.org/10.1016/j.jeurceramsoc.2007.02.190 DOI: https://doi.org/10.1016/j.jeurceramsoc.2007.02.190
Spitsberg I. and Steibel J. - Thermal and environmental barrier coatings for SiC/SiC CMCs in aircraft engine applications, Int. J. Appl. Ceram. Technol., 1(4) (2004) 291-301. https://doi.org/10.1111/j.1744-7402.2004.tb00181.x DOI: https://doi.org/10.1111/j.1744-7402.2004.tb00181.x
Krishnarao R., Godkhindi M., Chakraborty M., and Mukunda P. - Formation of SiC whiskers from compacts of raw rice husks, J. Mater. Sci., 29 (1994) 2741-2744. https://doi.org/10.1007/BF00356826 DOI: https://doi.org/10.1007/BF00356826
Khai T. V., Minh H. N., Nhi N. V. U., and Kien K. D. T. - Effect of composition on the ability to form SiC/SiO2-C composite from rice husk and silica gel, J. Ceram. Process. Res., 22(2) (2021) 246-251.
Khangkhamano M., Singsarothai S., Kokoo R., and Niyomwas S. - Conversion of bagasse ash waste to nanosized SiC powder, Int. J. Self-Propag. High-Temp. Synth., 27 (2018) 98-102. https://doi.org/10.3103/S1061386218020103 DOI: https://doi.org/10.3103/S1061386218020103
Bringas-Rodríguez V., Huamán-Mamani F., Paredes-Paz J., and Gamarra-Delgado J. - Evaluation of thermomechanical behavior in controlled atmospheres of silicon carbide obtained from sawdust residues of the Peruvian timber industry, Mater. Today: Proc., 33 (2020) 1835-1839. https://doi.org/10.1016/j.matpr.2020.05.175 DOI: https://doi.org/10.1016/j.matpr.2020.05.175
Wang Y., Zhang L., Zhang X., Zhang Z., Tong Y., Li F., Wu J. C. S., and Wang X. - Openmouthed β-SiC hollow-sphere with highly photocatalytic activity for reduction of CO2 with H2O, Appl. Catal., B, 206 (2017) 158-167. https://doi.org/10.1016/j.apcatb.2017.01.028 DOI: https://doi.org/10.1016/j.apcatb.2017.01.028
Goto T. and Homma H. - High-temperature active/passive oxidation and bubble formation of CVD SiC in O2 and CO2 atmospheres, J. Eur. Ceram. Soc., 22(14-15) (2022) 2749-2756. https://doi.org/10.1016/S0955-2219(02)00139-5 DOI: https://doi.org/10.1016/S0955-2219(02)00139-5
King S., French M., Bielefeld J., and Lanford W. - Fourier transform infrared spectroscopy investigation of chemical bonding in low-k a-SiC: H thin films, J. Non-Cryst. Solids, 357(15) (2011) 2970-2983. https://doi.org/10.1016/j.jnoncrysol.2011.04.001 DOI: https://doi.org/10.1016/j.jnoncrysol.2011.04.001
Kien K. D. T., Tuan P. D., Okabe T., Minh D. Q., and Khai T. V. - Study on sintering process of woodceramics from the cashew nutshell waste, J. Ceram. Process. Res., 19(6) (2018) 472-478.
Kien K. D. T., Minh D. Q., Minh H. N., and Nhi N. V. U. - Synthesis of TiO2-SiO2 from tetra-n-butyl orthotitanate and tetraethyl orthosilicate by the sol-gel method applied as a coating on the surface of ceramics, Ceramics–Silikáty, 67(1) (2023) 58-63. https://doi.org/10.13168/cs.2023.0002 DOI: https://doi.org/10.13168/cs.2023.0002
Chiew Y. L. and Cheong K. Y. - A review on the synthesis of SiC from plant-based biomasses, Mater. Sci. Eng. B, 176(13) (2011) 951-964. https://doi.org/10.1016/j.mseb.2011.05.037 DOI: https://doi.org/10.1016/j.mseb.2011.05.037
Fneich H., Vermillac M., Neuville D. R., Blanc W., and Mehdi A. - Highlighting of LaF3 reactivity with SiO2 and GeO2 at high temperature, Ceramics, 5(2) (2022) 182-200. https://doi.org/10.3390/ceramics5020016 DOI: https://doi.org/10.3390/ceramics5020016
Taylor N. W. and Lin C. Y. - Effect of various catalysts on conversion of quartz to cristobalite and tridymite at high temperatures, J. Am. Ceram. Soc., 24(2) (1941) 57-63. https://doi.org/10.1111/j.1151-2916.1941.tb14821.x DOI: https://doi.org/10.1111/j.1151-2916.1941.tb14821.x
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.