Monitoring of histamine-induced calcium channel activity of a single cell using semiconducting carbon nanotube transistors

Viet Anh Pham Ba, Ngoc Pham Van Bach, Khoa Nguyen Viet
Author affiliations

Authors

  • Viet Anh Pham Ba Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam https://orcid.org/0000-0002-4096-4328
  • Ngoc Pham Van Bach Space Technology Institute, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam https://orcid.org/0000-0002-7484-7402
  • Khoa Nguyen Viet Institute of Mechanics, Vietnam Academy of Science and Technology, 264 Doi Can, Ba Dinh, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/2525-2518/17429

Keywords:

histamine, Ca2 channel, single cell, semiconducting carbon nanotube

Abstract

A method using transistors based on semiconducting carbon nanotubes were developed for the real-time monitoring of the electrophysiological responses of individual cells to histamine stimulation. Transistors with one or three floating electrodes were utilized to evaluate histamine-induced Ca2+ influx into Hela cells via the recording of the conductance changes of the transistors. The Ca2+ influx resulted from the activation of histamine H1 receptors embedded on the cell membranes by histamine, which generated a temporary negative potential at the gap between the cell and the transistor. Moreover, the antihistamine effects of chlorpheniramine on histamine-induced Ca2+ influx were also investigated by using a transistor including three floating electrodes. Especially, only a single transistor was applied to repeat the measurements of the responses of multiple Hela cells pretreated with chlorpheniramine to histamine stimulation. This allows us to acquire data without being suffered from device-to-device variations, implying our method would be a simple but powerful method for applications of nanoscale biosensors to electrophysiological studies.

Downloads

Download data is not yet available.

References

Imaizumi Y. - Reciprocal Relationship between Ca(2+) Signaling and Ca(2+)-Gated Ion Channels as a Potential Target for Drug Discovery. Biol Pharm Bull, 45 (2022) 1-18. doi.org/10.1248/bpb.b21-00896. DOI: https://doi.org/10.1248/bpb.b21-00896

Von Lindern M., Egee S., Bianchi P., Kaestner L. - The Function of Ion Channels and Membrane Potential in Red Blood Cells: Toward a Systematic Analysis of the Erythroid Channelome. Front Physiol, 13 (2022) 824478. doi.org/10.3389/fphys.2022.824478. DOI: https://doi.org/10.3389/fphys.2022.824478

Capiod T. - The Need for Calcium Channels in Cell Proliferation. Recent Patents on Anti-Cancer Drug Discovery, 8 (2012) 4-17. doi.org/10.2174/1574892811308010004. DOI: https://doi.org/10.2174/1574892811308010004

Yoshimoto K., Hattori Y., Houzen H., Kanno M., Yasuda K. - Histamine H1-receptor-mediated increase in the Ca2+ transient without a change in the Ca2+ current in electrically stimulated guinea-pig atrial myocytes. Br J Pharmacol, 124 (1998) 1744-1750. doi.org/10.1038/sj.bjp.0702008. DOI: https://doi.org/10.1038/sj.bjp.0702008

Sauvé R., Diarra A., Chahine M., Simoneau C., Morier N., Roy G. - Ca2+ oscillations induced by histamine H1 receptor stimulation in HeLa cells: Fura-2 and patch clamp analysis. Cell Calcium, 12 (1991) 165-176. doi.org/10.1016/0143-4160(91)90018-a. DOI: https://doi.org/10.1016/0143-4160(91)90018-A

Missiaen L., De Smedt H., Pary J. B., Oike M., Casteels R. - Kinetics of empty store-activated Ca2+ influx in HeLa cells. Journal of Biological Chemistry, 269 (1994) 5817-5823. doi.org/10.1016/s0021-9258(17)37535-x. DOI: https://doi.org/10.1016/S0021-9258(17)37535-X

Borle A. B. - An overview of techniques for the measurement of calcium distribution, calcium fluxes, and cytosolic free calcium in mammalian cells. Environ Health Perspect, 84 (1990) 45-56. doi.org/10.1289/ehp.908445. DOI: https://doi.org/10.1289/ehp.908445

Kelly M. L., Woodbury D. J. - Advantages and disadvantages of patch clamping versus using BLM. 7 (2003) 699-721. doi.org/10.1016/s0927-5193(03)80049-9. DOI: https://doi.org/10.1016/S0927-5193(03)80049-9

Zhu Z. - An Overview of Carbon Nanotubes and Graphene for Biosensing Applications. Nanomicro Lett, 9 (2017) 25. doi.org/10.1007/s40820-017-0128-6. DOI: https://doi.org/10.1007/s40820-017-0128-6

Kataoka-Hamai C., Inoue H., Miyahara Y. - Detection of supported lipid bilayers using their electric charge. Langmuir, 24 (2008) 9916-9920. doi.org/10.1021/la801623m. DOI: https://doi.org/10.1021/la801623m

Pham Ba V. A., Pham Van Bach N., Nguyen Luong T., Nguyen K. V. - Semiconducting Carbon Nanotube-Based Nanodevices for Monitoring the Effects of Chlorphenamine on the Activities of Intracellular Ca2+ Stores. J Anal Methods Chem, 2022 (2022) 9019262. doi.org/10.1155/2022/9019262. DOI: https://doi.org/10.1155/2022/9019262

Zhou W., Wang Y. Y., Lim T. S., Pham T., Jain D., Burke P. J. - Detection of single ion channel activity with carbon nanotubes. Sci Rep, 5 (2015) 9208. doi.org/10.1038/srep09208. DOI: https://doi.org/10.1038/srep09208

Pham Ba V. A., Cho D. G., Kim D., Yoo H., Ta V. T., Hong S. - Quantitative electrophysiological monitoring of anti-histamine drug effects on live cells via reusable sensor platforms. Biosens Bioelectron, 94 (2017) 707-713. doi.org/10.1016/j.bios.2017.03.063. DOI: https://doi.org/10.1016/j.bios.2017.03.063

Yao X., Zhang Y., Jin W., Hu Y., Cui Y. - Carbon Nanotube Field-Effect Transistor-Based Chemical and Biological Sensors. Sensors (Basel), 21 (2021) 995. doi.org/10.3390/s21030995. DOI: https://doi.org/10.3390/s21030995

Tillman T. S., Cascio M. - Effects of Membrane Lipids on Ion Channel Structure and Function. Cell Biochemistry and Biophysics, 38 (2003) 161-190. doi.org/10.1385/cbb:38:2:161. DOI: https://doi.org/10.1385/CBB:38:2:161

Lee M., Lee J., Kim T. H., Lee H., Lee B. Y., Park J., Jhon Y. M., Seong M. J., Hong S. - 100 nm scale low-noise sensors based on aligned carbon nanotube networks: overcoming the fundamental limitation of network-based sensors. Nanotechnology, 21 (2010) 055504. doi.org/10.1088/0957-4484/21/5/055504. DOI: https://doi.org/10.1088/0957-4484/21/5/055504

Lee M., Noah M., Park J., Seong M. J., Kwon Y. K., Hong S. - "Textured" network devices: overcoming fundamental limitations of nanotube/nanowire network-based devices. Small, 5 (2009) 1642-1648. doi.org/10.1002/smll.200801500. DOI: https://doi.org/10.1002/smll.200801500

Kim B., Lee J., Namgung S., Kim J., Park J. Y., Lee M.-S., Hong S. - DNA sensors based on CNT-FET with floating electrodes. Sensors and Actuators B: Chemical, 169 (2012) 182-187. doi.org/10.1016/j.snb.2012.04.063. DOI: https://doi.org/10.1016/j.snb.2012.04.063

Mizutani T., Nosho Y., Ohno Y. - Electrical properties of carbon nanotube FETs. Journal of Physics: Conference Series, 109 (2008) 012002. doi.org/10.1088/1742-6596/109/1/012002. DOI: https://doi.org/10.1088/1742-6596/109/1/012002

Dickenson J. M., Hill S. J. - Histamine H1-receptor-mediated calcium influx in DDT1MF-2 cells. Biochem J, 284 ( Pt 2) (1992) 425-431. doi.org/10.1042/bj2840425. DOI: https://doi.org/10.1042/bj2840425

Niisato N., Ogato Y., Furuyama S., Sugiya H. - Histamine H1 receptor-induced Ca2+ mobilization and prostaglandin E2 release in human gingival fibroblasts. Biochemical Pharmacology, 52 (1996) 1015-1023. doi.org/10.1016/0006-2952(96)00417-0. DOI: https://doi.org/10.1016/0006-2952(96)00417-0

Paltauf-Doburzynska J., Frieden M., Spitaler M., Graier W. F. - Histamine-induced Ca2+ oscillations in a human endothelial cell line depend on transmembrane ion flux, ryanodine receptors and endoplasmic reticulum Ca2+-ATPase. J Physiol, 524 Pt 3 (2000) 701-713. doi.org/10.1111/j.1469-7793.2000.00701.x. DOI: https://doi.org/10.1111/j.1469-7793.2000.00701.x

Berridge M. J. - Elementary and global aspects of calcium signalling. J Physiol, 499 ( Pt 2) (1997) 291-306. doi.org/10.1113/jphysiol.1997.sp021927. DOI: https://doi.org/10.1113/jphysiol.1997.sp021927

Gokina N. I., Bevan J. A. - Histamine-induced depolarization: ionic mechanisms and role in sustained contraction of rabbit cerebral arteries. Am J Physiol Heart Circ Physiol, 278 (2000) H2094-2104. doi.org/10.1152/ajpheart.2000.278.6.H2094. DOI: https://doi.org/10.1152/ajpheart.2000.278.6.H2094

Heller I., Janssens A. M., Mannik J., Minot E. D., Lemay S. G., Dekker C. - Identifying the mechanism of biosensing with carbon nanotube transistors. Nano Lett, 8 (2008) 591-595. doi.org/10.1021/nl072996i. DOI: https://doi.org/10.1021/nl072996i

Cho Y., Pham Ba V. A., Jeong J. Y., Choi Y., Hong S. - Ion-Selective Carbon Nanotube Field-Effect Transistors for Monitoring Drug Effects on Nicotinic Acetylcholine Receptor Activation in Live Cells. Sensors (Basel), 20 (2020)doi.org/10.3390/s20133680. DOI: https://doi.org/10.3390/s20133680

Byon H. R., Choi H. C. - Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications. J Am Chem Soc, 128 (2006) 2188-2189. doi.org/10.1021/ja056897n. DOI: https://doi.org/10.1021/ja056897n

Mizuguchi H., Ono S., Hattori M., Sasaki Y., Fukui H. - Usefulness of HeLa cells to evaluate inverse agonistic activity of antihistamines. Int Immunopharmacol, 15 (2013) 539-543. doi.org/10.1016/j.intimp.2013.02.009. DOI: https://doi.org/10.1016/j.intimp.2013.02.009

Downloads

Published

05-04-2023

How to Cite

[1]
V. A. Pham Ba, Ngoc Pham Van Bach, and K. Nguyen Viet, “Monitoring of histamine-induced calcium channel activity of a single cell using semiconducting carbon nanotube transistors”, Vietnam J. Sci. Technol., vol. 61, no. 3, pp. 519–528, Apr. 2023.

Issue

Section

Mechanical Engineering - Mechatronics