Monitoring of histamine-induced calcium channel activity of a single cell using semiconducting carbon nanotube transistors
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/17429Keywords:
histamine, Ca2 channel, single cell, semiconducting carbon nanotubeAbstract
A method using transistors based on semiconducting carbon nanotubes were developed for the real-time monitoring of the electrophysiological responses of individual cells to histamine stimulation. Transistors with one or three floating electrodes were utilized to evaluate histamine-induced Ca2+ influx into Hela cells via the recording of the conductance changes of the transistors. The Ca2+ influx resulted from the activation of histamine H1 receptors embedded on the cell membranes by histamine, which generated a temporary negative potential at the gap between the cell and the transistor. Moreover, the antihistamine effects of chlorpheniramine on histamine-induced Ca2+ influx were also investigated by using a transistor including three floating electrodes. Especially, only a single transistor was applied to repeat the measurements of the responses of multiple Hela cells pretreated with chlorpheniramine to histamine stimulation. This allows us to acquire data without being suffered from device-to-device variations, implying our method would be a simple but powerful method for applications of nanoscale biosensors to electrophysiological studies.
Downloads
References
Imaizumi Y. - Reciprocal Relationship between Ca(2+) Signaling and Ca(2+)-Gated Ion Channels as a Potential Target for Drug Discovery. Biol Pharm Bull, 45 (2022) 1-18. doi.org/10.1248/bpb.b21-00896. DOI: https://doi.org/10.1248/bpb.b21-00896
Von Lindern M., Egee S., Bianchi P., Kaestner L. - The Function of Ion Channels and Membrane Potential in Red Blood Cells: Toward a Systematic Analysis of the Erythroid Channelome. Front Physiol, 13 (2022) 824478. doi.org/10.3389/fphys.2022.824478. DOI: https://doi.org/10.3389/fphys.2022.824478
Capiod T. - The Need for Calcium Channels in Cell Proliferation. Recent Patents on Anti-Cancer Drug Discovery, 8 (2012) 4-17. doi.org/10.2174/1574892811308010004. DOI: https://doi.org/10.2174/1574892811308010004
Yoshimoto K., Hattori Y., Houzen H., Kanno M., Yasuda K. - Histamine H1-receptor-mediated increase in the Ca2+ transient without a change in the Ca2+ current in electrically stimulated guinea-pig atrial myocytes. Br J Pharmacol, 124 (1998) 1744-1750. doi.org/10.1038/sj.bjp.0702008. DOI: https://doi.org/10.1038/sj.bjp.0702008
Sauvé R., Diarra A., Chahine M., Simoneau C., Morier N., Roy G. - Ca2+ oscillations induced by histamine H1 receptor stimulation in HeLa cells: Fura-2 and patch clamp analysis. Cell Calcium, 12 (1991) 165-176. doi.org/10.1016/0143-4160(91)90018-a. DOI: https://doi.org/10.1016/0143-4160(91)90018-A
Missiaen L., De Smedt H., Pary J. B., Oike M., Casteels R. - Kinetics of empty store-activated Ca2+ influx in HeLa cells. Journal of Biological Chemistry, 269 (1994) 5817-5823. doi.org/10.1016/s0021-9258(17)37535-x. DOI: https://doi.org/10.1016/S0021-9258(17)37535-X
Borle A. B. - An overview of techniques for the measurement of calcium distribution, calcium fluxes, and cytosolic free calcium in mammalian cells. Environ Health Perspect, 84 (1990) 45-56. doi.org/10.1289/ehp.908445. DOI: https://doi.org/10.1289/ehp.908445
Kelly M. L., Woodbury D. J. - Advantages and disadvantages of patch clamping versus using BLM. 7 (2003) 699-721. doi.org/10.1016/s0927-5193(03)80049-9. DOI: https://doi.org/10.1016/S0927-5193(03)80049-9
Zhu Z. - An Overview of Carbon Nanotubes and Graphene for Biosensing Applications. Nanomicro Lett, 9 (2017) 25. doi.org/10.1007/s40820-017-0128-6. DOI: https://doi.org/10.1007/s40820-017-0128-6
Kataoka-Hamai C., Inoue H., Miyahara Y. - Detection of supported lipid bilayers using their electric charge. Langmuir, 24 (2008) 9916-9920. doi.org/10.1021/la801623m. DOI: https://doi.org/10.1021/la801623m
Pham Ba V. A., Pham Van Bach N., Nguyen Luong T., Nguyen K. V. - Semiconducting Carbon Nanotube-Based Nanodevices for Monitoring the Effects of Chlorphenamine on the Activities of Intracellular Ca2+ Stores. J Anal Methods Chem, 2022 (2022) 9019262. doi.org/10.1155/2022/9019262. DOI: https://doi.org/10.1155/2022/9019262
Zhou W., Wang Y. Y., Lim T. S., Pham T., Jain D., Burke P. J. - Detection of single ion channel activity with carbon nanotubes. Sci Rep, 5 (2015) 9208. doi.org/10.1038/srep09208. DOI: https://doi.org/10.1038/srep09208
Pham Ba V. A., Cho D. G., Kim D., Yoo H., Ta V. T., Hong S. - Quantitative electrophysiological monitoring of anti-histamine drug effects on live cells via reusable sensor platforms. Biosens Bioelectron, 94 (2017) 707-713. doi.org/10.1016/j.bios.2017.03.063. DOI: https://doi.org/10.1016/j.bios.2017.03.063
Yao X., Zhang Y., Jin W., Hu Y., Cui Y. - Carbon Nanotube Field-Effect Transistor-Based Chemical and Biological Sensors. Sensors (Basel), 21 (2021) 995. doi.org/10.3390/s21030995. DOI: https://doi.org/10.3390/s21030995
Tillman T. S., Cascio M. - Effects of Membrane Lipids on Ion Channel Structure and Function. Cell Biochemistry and Biophysics, 38 (2003) 161-190. doi.org/10.1385/cbb:38:2:161. DOI: https://doi.org/10.1385/CBB:38:2:161
Lee M., Lee J., Kim T. H., Lee H., Lee B. Y., Park J., Jhon Y. M., Seong M. J., Hong S. - 100 nm scale low-noise sensors based on aligned carbon nanotube networks: overcoming the fundamental limitation of network-based sensors. Nanotechnology, 21 (2010) 055504. doi.org/10.1088/0957-4484/21/5/055504. DOI: https://doi.org/10.1088/0957-4484/21/5/055504
Lee M., Noah M., Park J., Seong M. J., Kwon Y. K., Hong S. - "Textured" network devices: overcoming fundamental limitations of nanotube/nanowire network-based devices. Small, 5 (2009) 1642-1648. doi.org/10.1002/smll.200801500. DOI: https://doi.org/10.1002/smll.200801500
Kim B., Lee J., Namgung S., Kim J., Park J. Y., Lee M.-S., Hong S. - DNA sensors based on CNT-FET with floating electrodes. Sensors and Actuators B: Chemical, 169 (2012) 182-187. doi.org/10.1016/j.snb.2012.04.063. DOI: https://doi.org/10.1016/j.snb.2012.04.063
Mizutani T., Nosho Y., Ohno Y. - Electrical properties of carbon nanotube FETs. Journal of Physics: Conference Series, 109 (2008) 012002. doi.org/10.1088/1742-6596/109/1/012002. DOI: https://doi.org/10.1088/1742-6596/109/1/012002
Dickenson J. M., Hill S. J. - Histamine H1-receptor-mediated calcium influx in DDT1MF-2 cells. Biochem J, 284 ( Pt 2) (1992) 425-431. doi.org/10.1042/bj2840425. DOI: https://doi.org/10.1042/bj2840425
Niisato N., Ogato Y., Furuyama S., Sugiya H. - Histamine H1 receptor-induced Ca2+ mobilization and prostaglandin E2 release in human gingival fibroblasts. Biochemical Pharmacology, 52 (1996) 1015-1023. doi.org/10.1016/0006-2952(96)00417-0. DOI: https://doi.org/10.1016/0006-2952(96)00417-0
Paltauf-Doburzynska J., Frieden M., Spitaler M., Graier W. F. - Histamine-induced Ca2+ oscillations in a human endothelial cell line depend on transmembrane ion flux, ryanodine receptors and endoplasmic reticulum Ca2+-ATPase. J Physiol, 524 Pt 3 (2000) 701-713. doi.org/10.1111/j.1469-7793.2000.00701.x. DOI: https://doi.org/10.1111/j.1469-7793.2000.00701.x
Berridge M. J. - Elementary and global aspects of calcium signalling. J Physiol, 499 ( Pt 2) (1997) 291-306. doi.org/10.1113/jphysiol.1997.sp021927. DOI: https://doi.org/10.1113/jphysiol.1997.sp021927
Gokina N. I., Bevan J. A. - Histamine-induced depolarization: ionic mechanisms and role in sustained contraction of rabbit cerebral arteries. Am J Physiol Heart Circ Physiol, 278 (2000) H2094-2104. doi.org/10.1152/ajpheart.2000.278.6.H2094. DOI: https://doi.org/10.1152/ajpheart.2000.278.6.H2094
Heller I., Janssens A. M., Mannik J., Minot E. D., Lemay S. G., Dekker C. - Identifying the mechanism of biosensing with carbon nanotube transistors. Nano Lett, 8 (2008) 591-595. doi.org/10.1021/nl072996i. DOI: https://doi.org/10.1021/nl072996i
Cho Y., Pham Ba V. A., Jeong J. Y., Choi Y., Hong S. - Ion-Selective Carbon Nanotube Field-Effect Transistors for Monitoring Drug Effects on Nicotinic Acetylcholine Receptor Activation in Live Cells. Sensors (Basel), 20 (2020)doi.org/10.3390/s20133680. DOI: https://doi.org/10.3390/s20133680
Byon H. R., Choi H. C. - Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications. J Am Chem Soc, 128 (2006) 2188-2189. doi.org/10.1021/ja056897n. DOI: https://doi.org/10.1021/ja056897n
Mizuguchi H., Ono S., Hattori M., Sasaki Y., Fukui H. - Usefulness of HeLa cells to evaluate inverse agonistic activity of antihistamines. Int Immunopharmacol, 15 (2013) 539-543. doi.org/10.1016/j.intimp.2013.02.009. DOI: https://doi.org/10.1016/j.intimp.2013.02.009
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.