Adsorption of direct red 79 in wastewater on Fe2Fe1-xMnxO4 (x = 0 - 1) nanoparticles prepared by co-precipitation method
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/17242Keywords:
spinel ferrite, magnetization, adsorption, Direct Red 79Abstract
Magnetic spinel ferrite nanoparticles Fe2Fe1-xMnxO4 were synthesized by a simple co-precipitation method. The morphology and structures of the synthesized samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), Raman spectroscopy, and infrared spectroscopy (FTIR). The magnetic properties of the materials were studied using VMS measurement. The results showed that the spinel ferrite nanoparticles formed a single phase of packed face-centered cubic spinel structure. When replacing Mn2+ ions with Fe2+, the crystal structure shifted from the Fe3O4 crystal structure to the MnFe2O4 crystal structure assigned with an increased lattice constant from 6.30 nm to 26.33 nm. Raman and FTIR spectrum analysis showed that when replacing Mn2+ ions with Fe2+, the Mn-O and Fe-O bonds changed significantly. Specifically, the intensity of the Raman spectrum's reflection and the FTIR spectrum's absorption decreased gradually. All the samples exhibited uniform spherical shapes, and particle size varied from 9.8 nm to 30 nm, depending strongly on the substituted concentration. The magnetization curves confirm the soft ferromagnetic behavior with close superparamagnetic properties of Fe2Fe1-xMnxO4 nanoparticles. The material used to study the adsorption of Direct Red 79 (DR79) in water has good adsorption capacity. The adsorption process obeys pseudo-second-order kinetics and also shows compliance with Langmuir, Freundlich and Temkin isotherms.
Downloads
References
Zhang H., Hou A., Xie K., Gao A. - Smart color-changing paper packaging sensors with pH sensitive chromophores based on azo-anthraquinone reactive dyes. Sensors and Actuators B: Chemical, 286 (2019) 362-369. https://doi.org/10.1016/j.snb.2019.01.165 DOI: https://doi.org/10.1016/j.snb.2019.01.165
GilPavas E., Dobrosz-Gómez I., Gómez-García M.-Á. - Optimization and toxicity assessment of a combined electrocoagulation, H2O2/Fe2+/UV and activated carbon adsorption for textile wastewater treatment. Science of the Total Environment, 651 (2019) 551-560. https://doi.org/10.1016/j.scitotenv.2018.09.125 DOI: https://doi.org/10.1016/j.scitotenv.2018.09.125
Ozturk E., Koseoglu H., Karaboyacı M., Yigit N. O., Yetis U., Kitis M. - Minimization of water and chemical use in a cotton/polyester fabric dyeing textile mill. Journal of cleaner production, 130 (2016) 92-102. https://doi.org/10.1016/j.jclepro.2016.01.080 DOI: https://doi.org/10.1016/j.jclepro.2016.01.080
Ziane S., Bessaha F., Marouf-Khelifa K., Khelifa A. - Single and binary adsorption of reactive black 5 and Congo red on modified dolomite: Performance and mechanism. Journal of Molecular Liquids, 249 (2018) 1245-1253. https://doi.org/10.1016/j.molliq.2017.11.130 DOI: https://doi.org/10.1016/j.molliq.2017.11.130
Mahmoodi N. M., Arami M., Bahrami H., Khorramfar S. - The effect of pH on the removal of anionic dyes from colored textile wastewater using a biosorbent. Journal of applied polymer science, 120 (2011) 2996-3003. https://doi.org/10.1002/app.33406 DOI: https://doi.org/10.1002/app.33406
Anastopoulos I., Kyzas G. Z. - Agricultural peels for dye adsorption: a review of recent literature. Journal of Molecular Liquids, 200 (2014) 381-389. https://doi.org/10.1016/j.molliq.2014.11.006 DOI: https://doi.org/10.1016/j.molliq.2014.11.006
Kozakova Z., Klimova E. J., Obradovic B. M., Dojcinovic B. P., Krcma F., Kuraica M. M., Olejnickova Z., Sykora R., Vavrova M. - Comparison of liquid and liquid‐gas phase plasma reactors for discoloration of azo dyes: Analysis of degradation products. Plasma Processes and Polymers, 15 (2018) 1700178. https://doi.org/10.1002/ppap.201700178 DOI: https://doi.org/10.1002/ppap.201700178
Kavcı E. - Adsorption of Direct Red 243 dye onto clay: Kinetic study and isotherm analysis. Desalination and Water Treatment, 212 (2021) 452-461. https://doi.org/ 10.5004/dwt.2021.26861 DOI: https://doi.org/10.5004/dwt.2021.26861
Worch E. - Adsorption Technology in Water Treatment Fundamentals, Processes, and Modeling. Walter de Gruyter GmbH & Co. KG Berlin/Boston, 2012 DOI: https://doi.org/10.1515/9783110240238
Balarak D., Zafariyan M., Igwegbe C. A., Onyechi K. K., Ighalo J. O. - Adsorption of acid blue 92 dye from aqueous solutions by single-walled carbon nanotubes: isothermal, kinetic, and thermodynamic studies. Environmental Processes, 8 (2021) 869-888. https://doi.org/10.1007/s40710-021-00505-3 DOI: https://doi.org/10.1007/s40710-021-00505-3
Velusamy S., Roy A., Sundaram S., Kumar Mallick T. - A review on heavy metal ions and containing dyes removal through graphene oxide‐based adsorption strategies for textile wastewater treatment. The Chemical Record, 21 (2021) 1570-1610. https://doi.org/10.1002/tcr.202000153 DOI: https://doi.org/10.1002/tcr.202000153
Grimm O. C., Somaratne R. D. S., Wang Y., Kim S., Whitten J. E. - Thiol adsorption on metal oxide nanoparticles. Physical Chemistry Chemical Physics, 23 (2021) 8309-8317. https://doi.org/10.1039/D1CP00506E DOI: https://doi.org/10.1039/D1CP00506E
Gómez-Pastora J., Bringas E., Ortiz I. - Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chem. Eng. J., 256 (2014) 187-204. https://doi.org/10.1016/j.cej.2014.06.119 DOI: https://doi.org/10.1016/j.cej.2014.06.119
John Zhang Z. Z. L., Wang., Bryan C. Chakoumakos and Jin S. Yin - Temperature Dependence of Cation Distribution and Oxidation State in Magnetic Mn-Fe Ferrite Nanocrystals. Journal of American Chemical Society, 120 (1998) 1800-1804. https://doi.org/10.1021/ja973085l DOI: https://doi.org/10.1021/ja973085l
Harikishore D., Reddya K., Yun Y.-S. - Spinel ferrite magnetic adsorbents: alternative future materials for water purification. Coordination Chemistry Reviews, 315 (2016) 90-111. https://doi.org/10.1016/j.ccr.2016.01.012
Tang S. C. N., Lo I. M. C. - Magnetic nanoparticles: Essential factors for sustainable environmental applications. Water Research, 47 (2013) 2613 e2632. https://doi.org/10.1016/j.watres.2013.02.039. DOI: https://doi.org/10.1016/j.watres.2013.02.039
Wei X., Bhojappa S., Lin L.-S., Viadero R. C. - Performance of Nano-magnetite for removal of selenium from aqueous solutions. Environ. Eng. Sci., 29 (6) (2012) 526–532. https://doi.org.10.1089/ees.2011.0383 DOI: https://doi.org/10.1089/ees.2011.0383
KumarReddy D. H., Yeoung-SangYun - Spinel ferrite magnetic adsorbents: Alternative future materials for water purification. Coordination Chemistry Reviews, 315 (2016) 90-111. https://doi.org/10.1016/j.ccr.2016.01.012 DOI: https://doi.org/10.1016/j.ccr.2016.01.012
Jozef Slama, Martin Soka, Gruskova A., Rastislav Dosoudil, Vladimır Jancˇa'rik, Degmova' J. - Magnetic properties of selected substituted spinel ferrites. JournalofMagnetismandMagneticMaterials, 32 (2013) 6251–6256. https://doi.org/10.1016/j.jmmm.2012.07.016 DOI: https://doi.org/10.1016/j.jmmm.2012.07.016
Araújo C. S., Almeida I. L., Rezende H. C., Marcionilio S. M., Léon J. J., de Matos T. N. - Elucidation of mechanism involved in adsorption of Pb (II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchemical Journal, 137 (2018) 348-354. https://doi.org/10.1016/j.microc.2017.11.009 DOI: https://doi.org/10.1016/j.microc.2017.11.009
Afsar M. Z., Hoque S., Osman K. - A comparison of the Langmuir, Freundlich and Temkin equations to describe phosphate sorption characteristics of some representative soils of Bangladesh. International Journal of Soil Science, 7 (2012) 91. https://doi.org/ 10.3923/ijss.2012.91.99 DOI: https://doi.org/10.3923/ijss.2012.91.99
Kajjumba G. W., Emik S., Öngen A., Özcan H. K., Aydın S. - Modelling of adsorption kinetic processes—errors, theory and application. In Advanced Sorption Process Applications; Edebali, S., Ed.; InTech Open Limited: London, UK, 2019; pp. 1–19.
Li Z., Gao K., Han G., Wang R., Li H., Zhao X., Guo P. - Solvothermal synthesis of MnFe2O4 colloidal nanocrystal assemblies and their magnetic and electrocatalytic properties. New Journal of Chemistry, 39 (2015) 361-368. https://doi.org/10.1039/C4NJ01466A DOI: https://doi.org/10.1039/C4NJ01466A
Gong J., Lin X. - Facilitated electron transfer of hemoglobin embedded in nanosized Fe3O4 matrix based on paraffin impregnated graphite electrode and electrochemical catalysis for trichloroacetic acid. Microchemical journal, 75 (2003) 51-57. https://doi.org/10.1016/S0026-265X(03)00053-5 DOI: https://doi.org/10.1016/S0026-265X(03)00053-5
Liao M.-H., Chen D.-H. - Immobilization of yeast alcohol dehydrogenase on magnetic nanoparticles for improving its stability. Biotechnology Letters, 23 (2001) 1723-1727. https://doi.org/10.1023/A:1012485221802 DOI: https://doi.org/10.1023/A:1012485221802
Gul I., Abbasi A., Amin F., Anis-ur-Rehman M., Maqsood A. - Structural, magnetic and electrical properties of Co1− xZnxFe2O4 synthesized by co-precipitation method. Journal of magnetism and magnetic materials, 311 (2007) 494-499. https://doi.org/10.1016/j.jmmm.2006.08.005 DOI: https://doi.org/10.1016/j.jmmm.2006.08.005
Freire R., Ribeiro T., Vasconcelos I., Denardin J. C., Barros E., Mele G., Carbone L., Mazzetto S., Fechine P. - MZnFe2O4 (M= Ni, Mn) cubic superparamagnetic nanoparticles obtained by hydrothermal synthesis. Journal of nanoparticle research, 15 (2013) 1-12. https://doi.org/10.1007/s11051-013-1616-3 DOI: https://doi.org/10.1007/s11051-013-1616-3
Wang M., Shao C., Zhou S., Yang J., Xu F. - Preparation of carbon aerogels from TEMPO-oxidized cellulose nanofibers for organic solvents absorption. RSC advances, 7 (2017) 38220-38230. https://doi.org/10.1039/C7RA05506D DOI: https://doi.org/10.1039/C7RA05506D
Zhou Y., Xiao B., Liu S.-Q., Meng Z., Chen Z.-G., Zou C.-Y., Liu C.-B., Chen F., Zhou X. - Photo-Fenton degradation of ammonia via a manganese–iron double-active component catalyst of graphene–manganese ferrite under visible light. Chemical Engineering Journal, 283 (2016) 266-275. https://doi.org/10.1016/j.cej.2015.07.049 DOI: https://doi.org/10.1016/j.cej.2015.07.049
Zipare K., Dhumal J., Bandgar S., Mathe V., Shahane G. - Superparamagnetic manganese ferrite nanoparticles: synthesis and magnetic properties. Journal of Nanoscience and Nanoengineering, 1 (2015) 178-182.
Cullity B. D., Graham C. D. - Introduction to magnetic materials. Second Edition, John Wiley & Sons, New York, 2008 DOI: https://doi.org/10.1002/9780470386323
Xin Liu, Liu J., Zhang S., Nan Z., Shi Q. - Structural, Magnetic, and Thermodynamic Evolutions of Zn-Doped Fe3O4 Nanoparticles Synthesized Using a One-Step Solvothermal Method. J. Phys. Chem. C 120 (2016) 1328–1341. https://doi.org/10.1021/acs.jpcc.5b10618 DOI: https://doi.org/10.1021/acs.jpcc.5b10618
Islam K., Haque M., Kumar A., Hoq A., Hyder F., Hoque S. M. - Manganese ferrite nanoparticles (MnFe2O4): size dependence for hyperthermia and negative/positive contrast enhancement in MRI. Nanomaterials, 10 (2020) 2297. https://doi.org/ 10.3390/nano10112297 DOI: https://doi.org/10.3390/nano10112297
Yazdia S.T., Iranmaneshb P., Saeedniac M.M. S., Structural, optical and magnetic properties of MnxFe3−xO4 nanoferrites synthesized by a simple capping agent-free coprecipitation route, Materials Science & Engineering B, 245 ( 2019) 55–62.https://doi.org/10.1016/j.mseb.2019.05.009 DOI: https://doi.org/10.1016/j.mseb.2019.05.009
Li M., Gao Q., Wang T., Gong Y.-S., Han B., Xia K.-S., Zhou C.-G., Solvothermal synthesis of MnxFe3 − xO4 nanoparticles with interesting physicochemical characteristics and good catalytic degradation activity, Materials and Design, 97 (2016) 341–348.http://dx.doi.org/10.1016/j.matdes.2016.02.103 DOI: https://doi.org/10.1016/j.matdes.2016.02.103
Han R., Ma J., Yang C., Cui T., Liu W., Wang S. - Synthesis of nitrogen-doped carbon nanocages for sensitive electrochemical detection of uric acid. Materials Letters, 255 (2019) 126520-126520. https://doi.org/10.1016/j.matlet.2019.126520 DOI: https://doi.org/10.1016/j.matlet.2019.126520
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.