Synthesizing and investigating the electrical properties of carbonized metal–organic frameworks

Huy Quoc Tran, Huong Thi Diem Nguyen, Hoang Van Nguyen, Nhung Thi Tran, Tung Thanh Nguyen, Long Hoang Ngo, Thach Ngoc Tu
Author affiliations

Authors

  • Huy Quoc Tran HCMC University of Technology and Education, 01 Vo Van Ngan Street, Thu Duc District, Ho Chi Minh City, Viet Nam
  • Huong Thi Diem Nguyen University of Science, Vietnam National University (VNU-HCM), 227 Nguyen Van Cu street, district 5, Ho Chi Minh city, Viet Nam
  • Hoang Van Nguyen University of Science, Vietnam National University (VNU-HCM), 227 Nguyen Van Cu street, district 5, Ho Chi Minh city, Viet Nam
  • Nhung Thi Tran HCMC University of Technology and Education, 01 Vo Van Ngan Street, Thu Duc District, Ho Chi Minh City, Viet Nam
  • Tung Thanh Nguyen NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh Street, District 4, Ho Chi Minh City, Viet Nam
  • Long Hoang Ngo NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh Street, District 4, Ho Chi Minh City, Viet Nam
  • Thach Ngoc Tu Nguyen Tat Thanh University, 300A Nguyen Tat Thanh Street, District 4, Ho Chi Minh City, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/16311

Keywords:

Metal organic framework, carbonization, electrode, electrocatalysis, supercapacitor

Abstract

The metal–organic frameworks (MOFs)such as VNU-20, ZIF-8, ZIF-67, MOF-199, and MIL-53 were synthesized and carbonized. The obtained MOFs and their carbonized analogs were characterized by powder X-ray diffraction. Subsequently, the carbonized materials were mixed with poly(vinylidene fluoride-co-hexafluoroproplylene)/(1-Methyl-2- Pyrrolidinone) at 5 wt% and cast on glassy carbon electrodes for subsequent analyses. The cyclic voltammetry (CV) measurements of carbonized samples were carried out. The resulting CV scans indicate the reversible CV curves of carbonized VNU-20 electrodes through the reversible redox oxidation reactions between FeII and FeIII. Alongside this, the carbonized VNU-20 is found to have a comparable capacitance with that of carbonized ZIF-67, which is among the highest capacitance materials recorded in the literature for the same class of materials. Although further experiments need to be carried out for the optimization, our analysis initially reveals the promising properties of the carbonized VNU-20 electrode for electro-catalysis and the supercapacitor.

Downloads

Download data is not yet available.

References

Tu T. N., Nguyen M. V., Nguyen H. L., Yuliarto B., Cordova K. E. and Demir S. - Designing bipyridine-functionalized zirconium metal–organic frameworks as a platform for clean energy and other emerging applications, Coord. Chem. Rev. 364 (2018) 33. https://doi.org/10.1016/j.ccr.2018.03.014

Farha O. K. and Hupp J. T. - Rational Design, Synthesis, Purification, and Activation of Metal−Organic Framework Materials, Acc. Chem. Res. 43 (2010) 1166. https://doi.org/10.1021/ar1000617

Bai Y., Dou Y., Xie L. H., Rutledge W., Li J. R. and Zhou H. C. - Zr-based metal–organic frameworks: design, synthesis, structure, and applications, Chem. Soc. Rev. 45 (2016) 2327. https://doi.org/10.1039/C5CS00837A

Furukawa H., Cordova K. E., O’Keeffe M. and Yaghi O. M. - The Chemistry and Applications of Metal-Organic Frameworks, Science 341 (2013) 1230444. http://dx.doi.org/10.1126/science.123044

Adil K., Belmabkhout Y., R. Pillai S., Cadiau A., Bhatt P. M., A. Assen H., Maurin G. and Eddaoudi M. - Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship, Chem. Soc. Rev. 46 (2017) 3402. https://doi.org/10.1039/C7CS00153C

Stavila V., Talin A. A. and Allendorf M. D. - MOF-based electronic and opto-electronic devices, Chem. Soc. Rev. 43 (2014) 5994. https://doi.org/10.1039/C4CS00096J

Liu J., Chen L., Cui H., Zhang J., Zhang L. and Su C.-Y. - Applications of metal–organic frameworks in heterogeneous supramolecular catalysis, Chem. Soc. Rev. 43 (2014) 6011. https://doi.org/10.1039/C4CS00094C

Meng X., Wang H. N., Song S. Y. and Zhang H. J. - Proton-conducting crystalline porous materials, Chem. Soc. Rev. 46 (2017) 464. https://doi.org/10.1039/C6CS00528D

Wang H., Zhu Q. L., Zou R. and Xu Q. - Metal-Organic Frameworks for Energy Applications, Chem. 2 (2017) 52. https://doi.org/10.1016/j.chempr.2016.12.002

Wang G., Zhang L. and Zhang J. - A review of electrode materials for electrochemical supercapacitors Chem. Soc. Rev. 41 (2012) 797. https://doi.org/10.1039/C1CS15060J

Minakshi M., D. Mitchell R. G., Jones R. T., Pramanik N. C., Jean-Fulcrand A. and Garnweitner G. - A Hybrid Electrochemical Energy Storage Device Using Sustainable Electrode Materials, ChemistrySelect 5 (2020) 1597. https://doi.org/10.1002/slct.201904553

Wang X., Wu D., Song X., Du W., Zhao X. and Zhang D. - Review on Carbon/Polyaniline Hybrids: Design and Synthesis for Supercapacitor, Molecules 24 (2019) 2263. https://doi.org/10.3390/molecules24122263

Sung J. and Shin C. - Recent Studies on Supercapacitors with Next-Generation Structures, Micromachines 11 (2020) 1125. https://doi.org/10.3390/mi11121125

Chaikittisilp W., Hu M., Wang H., Huang H. S., Fujita T., Wu K. C. W., Chen L. C., Yamauchi Y. and Ariga K. - Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes, Chem. Commun. 48 (2012) 7259. https://doi.org/10.1039/C2CC33433J

Salunkhe R. R., Kaneti Y. V., Kim J., Kim J. H. and Yamauchi Y. - Nanoarchitectures for Metal–Organic Framework-Derived Nanoporous Carbons toward Supercapacitor Applications, Acc. Chem. Res. 49 (2016) 2796. https://doi.org/10.1021/ acs.accounts.6b00460

Young C., Kim J., Kaneti Y. V. and Yamauchi Y. - One-Step Synthetic Strategy of Hybrid Materials from Bimetallic Metal–Organic Frameworks for Supercapacitor Applications, ACS Appl. Energy Mater. 1 (2018) 2007. https://doi.org/10.1021/ acsaem.8b00103

Yang Y., Li M. L., Lin J. N., Zou M. Y., Gu S. T., X. Hong J., Si L. P. and Cai Y. P. - MOF-derived Ni3S4 Encapsulated in 3D Conductive Network for High-Performance Supercapacitor, Inorg. Chem. 59 (4) (2020) 2406. https://doi.org/10.1021/ acs.inorgchem.9b03263

Li Q., Dai Z., Wu J., Liu W., Di T., Jiang R., Zheng X., Wang W., Ji X., Li P., Xu Z., Qu X., Xu Z. and Zhou J. - Fabrication of Ordered Macro-Microporous Single-Crystalline MOF and Its Derivative Carbon Material for Supercapacitor, Adv. Energy Mater. 10 (2020) 1903750. https://doi.org/10.1002/aenm.201903750

Pham P. H., Doan S. H., Tran H. T. T., Nguyen N. N., Phan A. N. Q., Le H. V., Tu T. N. and Phan N. T. S. - A new transformation of coumarins via direct C–H bond activation utilizing an iron–organic framework as a recyclable catalyst, Catal. Sci. Technol. 8 (2018) 1267. https://doi.org/10.1039/C7CY02139A

Banerjee R., Phan A., Wang B., Knobler C., Furukawa H., O’Keeffe M. and Yaghi O. M. - High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture, Science 319 (2008) 939. https://doi.org/10.1126/science.1152516

Llewellyn P. L., Horcajada P., Maurin G., Devic T., Rosenbach N., Bourrelly S., Serre C., Vincent D., Loera-Serna S., Filinchuk Y. and Férey G. - Complex Adsorption of Short Linear Alkanes in the Flexible Metal-Organic-Framework MIL-53(Fe), J. Am. Chem. Soc. 131 (2009) 13002. https://doi.org/10.1021/ja902740r

Jeong N. C., Samanta B., Lee C. Y., Farha O. K. and Hupp J. T. - Coordination-Chemistry Control of Proton Conductivity in the Iconic Metal–Organic Framework Material HKUST-1, J. Am. Chem. Soc. 134 (2012) 51. https://doi.org/10.1021/ja2110152

Zhang J., Wang Y., Xiao K., Cheng S., Zhang T., Qian G., Zhang Q. and Feng Y. - N-Doped hierarchically porous carbon derived from heterogeneous core–shell ZIF-L(Zn)@ZIF-67 for supercapacitor application, New J. Chem. 42 (2018) 6719. https://doi.org/10.1039/C8NJ00393A

Boutin A., Neimark A. V and Fuchs A. H. - The Behavior of Flexible MIL-53(Al) upon CH4 and CO2 Adsorption, J. Phys. Chem. C 53 (2010) 22237. https://doi.org/10.1021/jp108710h

Downloads

Published

01-03-2024

How to Cite

[1]
H. Q. Tran, “Synthesizing and investigating the electrical properties of carbonized metal–organic frameworks ”, Vietnam J. Sci. Technol., vol. 62, no. 3, pp. 453–462, Mar. 2024.

Issue

Section

Materials