Investigation of coupled effects of temperature and relative humidity on dynamic performance of MEMS beam resonators in gas rarefaction
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/57/3/13123Keywords:
MEMS cantilever resonators, Quality factor, relative humidity, temperature, gas rarefactionAbstract
The modified molecular gas lubrication (MMGL) equation with the effective viscosity of moist air is utilized to solve for the squeeze film damping (SFD) problem on the dynamic performance of MEMS cantilever resonators. Thus, the coupled effects of temperature and relative humidity are discussed on the Q-factors of MEMS cantilever resonators in a wide range of gas rarefaction (pressure, p and accommodation coefficients, ACs) and resonant mode of vibration. The results showed that the Q-factor of moist air decreases more significantly as temperature and relative humidity increase at higher gas rarefaction (lower p, and ACs) conditions.
Downloads
References
Baller M. K., Lang H. P., Fritz J., Gerber Ch., Gimzewski J. K., Drechsler U., Rothuizen H., Despont M., Vettiger P., Battiston F. M., Ramseyer J. P., Fornaro P., Meyer E., and Güntherodt H. J., – A cantilever array-based artificial nose, Ultramicroscopy 82 (1-4) (2000) 1-9.
Lang H. P., Hegner M., and Gerber C., – Cantilever array sensors, materialstoday 8 (4) (2005) 30-36.
Hosaka H., Itao K., and Kuroda S., – Damping characteristics of beam-shaped micro-oscillators, Sensor. Actuat. A-Phys. 49 (1-2) (1995) 87–95.
Zhou H., Li P., and Zuo W., – Thermoelastic damping in micro-wedged cantilever resonator with rectangular cross-section, Proceedings of the 2016 IEEE International Conference on Mechatronics and Automation, (2016) 1590-1595.
Jandak M., Neuzil T., Schneider M., and Schmid U., – Investigation on different damping mechanisms on the Q factor of MEMS resonators, Procedia Engineering 168 (2016) 929-932.
Nieva P. M., McGruer N. E., and Adams G. G., – Design and characterization of a micromachined Fabry–Perot vibration sensor for high-temperature applications, J. Micromech. Microeng. 16 (2006) 2618–2631.
Kim B., Hopcroft M. A., Candler R. N., Jha C. M., Agarwal M., Melamud R., Chandorkar S. A., Yama G., and Kenny T. W., – Temperature dependence of quality factor in MEMS resonators, J. Microelectromech. S. 17 (3) (2008) 755–766.
Ghaffari S., Ng E. J., Ahn C. H., Yang Y., Wang S., Hong V. A., and Kenny T. W., – Accurate modeling of quality factor behavior of complex silicon MEMS resonators, J. Microelectromech. S. 24 (2) (2015) 276–288.
Hosseinzadegan H., Pierron O. N., and Hosseinian E., – Accurate modeling of air shear damping of a silicon lateral rotary micro-resonator for MEMS environmental monitoring applications, Sensor. Actuat. A-Phys. 216 (2014) 342–348.
Jan M. T., Ahmad F., Hamid N. H. B., Khir M. H. B. M., Shoaib M., and Ashraf K., – Experimental investigation of temperature and relative humidity effects on resonance frequency and quality factor of CMOS-MEMS paddle resonator, Microelectron. Reliab. 63 (2016) 82–89.
Hasan M. H., Ouakad H. M., and Alsaleem F., – On the effects of temperature and relative humidity on the response of a MEMS arch resonator, Proceedings of ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, (2017) 1-10.
Nguyen C. C., and Li W. L., – Effect of gas rarefaction on the quality factors of micro-beam resonators, Microsyst. Technol. 23 (8) (2017) 3185–3199.
Nguyen C. C., and Li W. L., – Effects of surface roughness and gas rarefaction on the quality factor of micro-beam resonators, Microsyst. Technol. 23 (8) (2017) 3489–3504.
Nguyen C. C., and Li W. L., – Influences of temperature on the quality factors of micro-beam resonators in gas rarefaction, Sensor. Actuat. A-Phys. 261 (2017) 151–165.
Haider S. T., Saleem M. M., and Ahmad M., – FEM Modeling of Squeeze Film Damping Effect in RF-MEMS Switches, Proceedings of EECSI 2017, Yogyakarta, Indonesia, (2017).
Morvay Z. K., and Gvozdenac D. D., – Applied Industrial Energy and Environmental Management, Fundamentals for analysis and calculation of energy and environmental performance, John Wiley & Sons, Ltd, 2008, 1-5.
Li W. L., – A database for interpolation of Poiseuille flow rate for arbitrary Knudsen number lubrication problems, J. Chin. Inst. Eng. 26 (4) (2003) 455–466.
Veijola T., Kuisma H., Lahdenperä J., and Ryhänen T., – Equivalent-circuit model of the squeezed gas film in a silicon accelerometer, Sensor. Actuat. A-Phys. 48 (3) (1995) 239–248.
Kreith F., and Goswami D. Y., – The CRC HANDBOOK of Mechanical engineering, CRC Press LLC, 2005, 1385.
Tan Z., – Air Pollution and Greenhouse Gases, Springer Science+Business Media, Singapore, 2014, 39-40.
ASHRAE, – The 2001 ASHRAE Fundamentals Handbook, 2001, 6.2 (Eq.5).
Zener C., – Internal friction in solids. I. Theory of internal friction in reeds, Phys. Rev. 52 (3) (1937) 230–235.
Zener C., – Internal friction in solids II. General theory of thermoelastic internal friction, Phys. Rev. 53 (1) (1938) 90–99.
Lifshitz R., and Roukes M. L., – Thermoelastic damping in micro- and nanomechanical systems, Phys. Rev. B 61 (8) (2000) 5600-5609.
Hao Z., Erbil A., and Ayazi F., – An analytical model for support loss in micromachined beam resonators with in-plane flexural vibrations, Sensor. Actuat. A-Phys. 109 (1–2) (2003) 156–164.
Li W. L., – Analytical modelling of ultra-thin gas squeeze film, Nanotechnology 10 (1999) 440–446.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.