ENHANCING NETWORK INTRUSION CLASSIfiCATION THROUGH THE KOLMOGOROV-SMIRNOV SPLITTING CRITERION
Author affiliations
DOI:
https://doi.org/10.15625/0866-708X/48/4/1167Abstract
ABSTRACT
Our investigation aims at detecting network intrusions using decision tree algorithms. Large differences in prior class probabilities of intrusion data have been reported to hinder the
performance of decision trees. We propose to replace the Shannon entropy used in tree induction algorithms with a Kolmogorov Smirnov splitting criterion which locates a Bayes optimal cutpoint of attributes. The Kolmogorov-Smirnov distance based on the cumulative distributions is not degraded by class imbalance. Numerical test results on the KDDCup99 dataset showed that our proposals are attractive to network intrusion detection tasks. The single decision tree gives best results for minority classes, cost metric and global accuracy compared with the bagged boosting of trees of the KDDCup’99 winner and classical decision tree algorithms using the Shannon entropy. In contrast to the complex model of KDDCup winner, our decision tree represents inductive rules (IF-THEN) that facilitate human interpretation.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.