Spatial-spectral fuzzy k-means clustering for remote sensing image segmentation
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/56/2/10785Keywords:
spectral clustering, spatial information, remote sensing image, fuzzy clusteringAbstract
Spectral clustering is a clustering method based on algebraic graph theory. The clustering effect by using spectral method depends heavily on the description of similarity between instances of the datasets. Althought, spectral clustering has been significant interest in recent times, but the raw spectral clustering is often based on Euclidean distance, but it is impossible to accurately reflect the complexity of the data. Despite having a well-defined mathematical framework, good performance and simplicity, it suffers from several drawbacks, such as it is unable to determine a reasonable cluster number, sensitive to initial condition and not robust to outliers. In this paper, we present a new approach named spatial-spectral fuzzy clustering which combines spectral clustering and fuzzy clustering with spatial information into a unified framework to solve these problems, the paper consists of three main steps: Step 1, calculate the spatial information value of the pixels, step 2 applies the spectral clustering algorithm to change the data space from the color space to the new space and step 3 clusters the data in new data space by fuzzy clustering algorithm. Experimental results on the remote sensing image were evaluated based on a number of indicators, such as IQI, MSE, DI and CSI, show that it can improve the clustering accuracy and avoid falling into local optimum.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.