Metal-dielectric phase transition of VO2 assisted broadband and high-efficiency bifunctional metasurface in the terahertz frequency
Metal-dielectric phase transition of VO2 assisted broadband and high-efficiency bifunctional metasurface
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/17069Keywords:
Vanadium dioxide, metasurface, broadband absorberAbstract
The integration of multiple varied functionalities into a single and compact EM-based device is greatly demanded in EM integration due to their miniaturized configurations. In this paper, a broadband and high-efficiency bifunctional metasurface employing vanadium dioxide (VO2) is proposed for the terahertz (THz) frequencies. Due to the dielectric-to-metal transition of VO2, the metasurface can be dynamically tuned from a reflecting surface to a broadband absorber under low-temperature conditions. When VO2 is in the dielectric phase, the designed metasurface shows excellent reflection (> 96 %) in a broad frequency range from 0.5 THz to 4.5 THz. Once VO2 is heated up and transited to its metal phase, the proposed metasurface structure efficiently absorbs normally incident EM waves in the frequency range of 1.29 THz to 3.26 THz with an average absorption of 94.3 %. Moreover, the high absorption characterization of the proposed metasurface is maintained with a wide incident angle and is polarization-insensitive due to its symmetric structure, which makes it suitable for THz applications.
Downloads
References
Phare, C., Daniel Lee, YH., Cardenas, J. and Lipson M. - Graphene electro-optic modulator with 30 GHz bandwidth, Nat. Photon. 9 (2015) 511-514. https://doi.org/10.1038/ nphoton.2015.122. DOI: https://doi.org/10.1038/nphoton.2015.122
Liu, M.., Yin, X., Ulin-Avila, E., Geng, B., Zentgraf, T., Ju, L., Wang, F. and Zhang. X - A graphene-based broadband optical modulator, Nature 474 (2011) 64. https://doi.org/10.1038/nature10067. DOI: https://doi.org/10.1038/nature10067
Kim, I., Kim, W. -S., Kim, K., Ansari, M. A., Mehmood, M. Q., Badloe, T., Kim, Y., Gwak, J., Lee, H., Kim, Y. -K. and Rho. J. - Holographic metasurface gas sensors for instantaneous visual alarms, Sci. Adv. 7 (2021) eabe9943. https://doi.org/10.1126/sciadv.abe9943. DOI: https://doi.org/10.1126/sciadv.abe9943
Lee, D., Gwak, J., Badloe, T., Palomba, S. and Rho. J. - Metasurfaces-based imaging and applications: from miniaturized optical components to functional imaging platforms, Nanoscale Adv. 2 (2020) 605-625. https://doi.org/10.1039/C9NA00751B. DOI: https://doi.org/10.1039/C9NA00751B
Liu, M., Zhu, W., Huo, P., Feng, L., Song, M., Zhang, C., Chen, L., Lezec, H. J. and Lu. Y. - Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states, Light Sci. Appl. 10 (2021) 107. https://doi.org/10.1038/s41377-021-00552-3. DOI: https://doi.org/10.1038/s41377-021-00552-3
Song, M., Wang, D., Kudyshev, Z., Xuan, Y., Wang, Z., Boltasseva, A., Shalaev, V. M., Kildishev, A. V. - Enabling optical steganography, data storage, and encyption with plasmonic colors, Laser Photon Rev. 15 (2021) 2000343. https://doi.org/ 10.1002/lpor.202000343. DOI: https://doi.org/10.1002/lpor.202000343
Ou, J. Y., Plum, E., Jiang, L. and Zheludev, N. I. - Reconfigurable photonic metamaterials, Nano Lett. 11 (2011) 2142. https://doi.org/10.1021/nl200791r. DOI: https://doi.org/10.1021/nl200791r
Ou, J. Y., Plum, E., Zhang, J. and Zheludev, N. I. - An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared, Nat. Nanotechnol. 8 (2013) 252-255. https://doi.org/10.1038/nnano.2013.25. DOI: https://doi.org/10.1038/nnano.2013.25
Pham, T.-L., Xuan, K. B., Tung, B. S., Hai, L. D., Long, L. V., Lam, V. D. and Tung, N. T. - Origami-based stretchable bi-functional metamaterials: reflector and broadband absorber, J Phys. D Appl. Phys. 54 (2021). https://doi.org/165111. 10.1088/1361-6463/abdbe6. DOI: https://doi.org/10.1088/1361-6463/abdbe6
Masyukov, M, Grebenchukow, A. N., Livinov, E. A., Baldycheva, A., Vozianova, A. V. and Khodzitsky, M. K. - Photo-tunable terahertz absorber based on intercalated few-layer graphene, J Opt. 22 (2020) 095105. https://doi.org/10.1088/2040-8986/abaa60. DOI: https://doi.org/10.1088/2040-8986/abaa60
Mou, N., Sun, S., Dong, H., Dong, S., He, Q., Zhou, L. and Zhang, L. - Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces, Opt. Express 26 (2018) 11728-11736. https://doi.org/10.1364/OE.26.011728. DOI: https://doi.org/10.1364/OE.26.011728
Jiang, Y., Xinguo, W., Wang, J. and Wang, J. - Tunable Terahertz absorber based on Bulk-Dirac-semimetal metasurface, IEEE Photonics J. 10 (2018) 4600607. https://doi.org/ 10.1109/JPHOT.2018.2866281 DOI: https://doi.org/10.1109/JPHOT.2018.2866281
Song, K., Wang, K., Li, J. and Liu, Q. H. - Broadband tunable terahertz absorber based on vanadium dioxide metamaterials, Opt. Express. 26 (2018) 7148-7154. https://doi.org/ 10.1364/OE.26.007148 DOI: https://doi.org/10.1364/OE.26.007148
Zhang, HT., Zhang, L., Mukherjee, D. et al. - Wafer-scale growth of VO2 thin films using a combinatorial approach, Nat. Commun. 6 (2015), 8475. https://doi.org/10.1038/ ncomms9475. DOI: https://doi.org/10.1038/ncomms9475
Lei, L., Lou, F., Tao, K., Huang, H., Cheng, X. and Xu, P. - Tunable and
scalable broadband metamaterial absorber involving VO2 - based phase
transition, Photonics Res. 7 (2019) 734-741. https://doi.org/10.1364/PRJ.7.000734. DOI: https://doi.org/10.1364/PRJ.7.000734
Liu, M., Hwang, H., Tao, H. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial, Nature 487 (2012) 345-348. https://doi.org/10.1038/ nature11231. DOI: https://doi.org/10.1038/nature11231
Chen, J., Tang, F., Wang, X., Wu, J., Wu, Y., Ye, X., Wang, Y. and Yang, L. - High efficiency broadband near-infrared absorbers based on tunable SiO2-VO2-MoS2 multilayer metamaterials, Results Phys. 26 (2021) 104404. https://doi.org/10.1016/j.rinp.2021.104404. DOI: https://doi.org/10.1016/j.rinp.2021.104404
Yan, D., Meng, M., Li, J., Li, J. and Li, X. - Vanadium dioxide-assisted broadband absorption and linear-to-circular polarization conversion based on a single metasurface design for the terahertz wave, Opt. Express 28 (2020) 29843. https://doi.org/10.1364/OE.404829. DOI: https://doi.org/10.1364/OE.404829
Huang, J., Li, J., Yang, Y., Li, J., Li, J., Zhang, Y. and Yao, J. - Broadband terahertz absorber with a flexible, reconfigurable performance based on hybrid-patterned vanadium dioxide metasurfaces, Opt. Express 28 (2020) 17832-17840. https://doi.org/10.1364/OE.394359. DOI: https://doi.org/10.1364/OE.394359
Tian, J., Luo, H., Yang, Y., Ding, F., Qu, Y., Zhao, D., Qiu M. and Bozhevolnyi, S. I. - Active control of anapole states by structuring the phase-change alloy Ge2Sb¬2Te5, Nat. Commun. 10 (2019) 396. https://doi.org/10.1038/s41467-018-08057-1. DOI: https://doi.org/10.1038/s41467-018-08057-1
Fang, L. W.-W., Zhao, R., Li, M., Lim, K.-G., Shi, L., Chong, T.-C. and Yeo, Y.-C. - Dependence of the properties of phase change random access memory on nitrogen doping concentration in Ge2Sb2Te5, J. Appl. Phys. 107 (2010) 104506. https://doi.org/10.1063/1.3383042 DOI: https://doi.org/10.1063/1.3383042
Gholipour, B., Karvounis, A., Yin, J., Soci, C., MacDonald K. F. and Zheludev, N. I. - Phase-change-driven dielectric-plasmonic transitions in chalcogenide metasurfaces, NPG Asia Mater. 10, (2018) 533-539. https://doi.org/10.1038/s41427-018-0043-4. DOI: https://doi.org/10.1038/s41427-018-0043-4
Mandal, A., Cui, Y., McRae L. and Gholipour, B. - Reconfigurable chalcogenide phase change metamaterials: A materials, device and fabrication perspective, JPhys. photonics 3 (2021) 022005. https://doi.org/10.1088/2515-7647/abe54d. DOI: https://doi.org/10.1088/2515-7647/abe54d
Galarreta1, C. R. de., Carrillo1, S. G.-C., Au, Y.-Y., Gemo, E., Trimby, L., Shields, J., Humphreys, E., Faneca, J., Cai, L., Baldycheva, A. - Tunable optical metasurfaces enabled by chalcogenide phase-change materials: from the visible to the THz, J. Opt. 22 (2020) 114001. https://doi.org/10.1088/2040-8986/abbb5b. DOI: https://doi.org/10.1088/2040-8986/abbb5b
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.