Metal-dielectric phase transition of VO2 assisted broadband and high-efficiency bifunctional metasurface in the terahertz frequency

Metal-dielectric phase transition of VO2 assisted broadband and high-efficiency bifunctional metasurface

Nguyen Thi Minh, Nguyen Thi Kim Thu, Nguyen Thi Hong Van, Nguyen Thi Minh Tam, Ho Thi Huyen Thuong, Phan Duy Tung, Vu Dinh Lam, Nguyen Thi Quynh Hoa
Author affiliations

Authors

  • Nguyen Thi Minh Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Viet Nam, 18 HoangQuoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Nguyen Thi Kim Thu Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Viet Nam, 18 HoangQuoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Nguyen Thi Hong Van Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Viet Nam, 18 HoangQuoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Nguyen Thi Minh Tam Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Viet Nam, 18 HoangQuoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Ho Thi Huyen Thuong Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Viet Nam, 18 HoangQuoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Phan Duy Tung Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Viet Nam, 18 HoangQuoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Vu Dinh Lam Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Viet Nam, 18 HoangQuoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Nguyen Thi Quynh Hoa School of Engineering and Technology, Vinh University, 182 Le Duan, Nghe An, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/17069

Keywords:

Vanadium dioxide, metasurface, broadband absorber

Abstract

The integration of multiple varied functionalities into a single and compact EM-based device is greatly demanded in EM integration due to their miniaturized configurations. In this paper, a broadband and high-efficiency bifunctional metasurface employing vanadium dioxide (VO2) is proposed for the terahertz (THz) frequencies. Due to the dielectric-to-metal transition of VO2, the metasurface can be dynamically tuned from a reflecting surface to a broadband absorber under low-temperature conditions. When VO2 is in the dielectric phase, the designed metasurface shows excellent reflection (> 96 %) in a broad frequency range from 0.5 THz to 4.5 THz. Once VO2 is heated up and transited to its metal phase, the proposed metasurface structure efficiently absorbs normally incident EM waves in the frequency range of 1.29 THz to 3.26 THz with an average absorption of 94.3 %. Moreover, the high absorption characterization of the proposed metasurface is maintained with a wide incident angle and is polarization-insensitive due to its symmetric structure, which makes it suitable for THz applications.

Downloads

Download data is not yet available.

References

Phare, C., Daniel Lee, YH., Cardenas, J. and Lipson M. - Graphene electro-optic modulator with 30 GHz bandwidth, Nat. Photon. 9 (2015) 511-514. https://doi.org/10.1038/ nphoton.2015.122. DOI: https://doi.org/10.1038/nphoton.2015.122 https://doi.org/10.1038/ nphoton.2015.122.">

Liu, M.., Yin, X., Ulin-Avila, E., Geng, B., Zentgraf, T., Ju, L., Wang, F. and Zhang. X - A graphene-based broadband optical modulator, Nature 474 (2011) 64. https://doi.org/10.1038/nature10067. DOI: https://doi.org/10.1038/nature10067 https://doi.org/10.1038/nature10067.">

Kim, I., Kim, W. -S., Kim, K., Ansari, M. A., Mehmood, M. Q., Badloe, T., Kim, Y., Gwak, J., Lee, H., Kim, Y. -K. and Rho. J. - Holographic metasurface gas sensors for instantaneous visual alarms, Sci. Adv. 7 (2021) eabe9943. https://doi.org/10.1126/sciadv.abe9943. DOI: https://doi.org/10.1126/sciadv.abe9943 https://doi.org/10.1126/sciadv.abe9943.">

Lee, D., Gwak, J., Badloe, T., Palomba, S. and Rho. J. - Metasurfaces-based imaging and applications: from miniaturized optical components to functional imaging platforms, Nanoscale Adv. 2 (2020) 605-625. https://doi.org/10.1039/C9NA00751B. DOI: https://doi.org/10.1039/C9NA00751B https://doi.org/10.1039/C9NA00751B.">

Liu, M., Zhu, W., Huo, P., Feng, L., Song, M., Zhang, C., Chen, L., Lezec, H. J. and Lu. Y. - Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states, Light Sci. Appl. 10 (2021) 107. https://doi.org/10.1038/s41377-021-00552-3. DOI: https://doi.org/10.1038/s41377-021-00552-3 https://doi.org/10.1038/s41377-021-00552-3.">

Song, M., Wang, D., Kudyshev, Z., Xuan, Y., Wang, Z., Boltasseva, A., Shalaev, V. M., Kildishev, A. V. - Enabling optical steganography, data storage, and encyption with plasmonic colors, Laser Photon Rev. 15 (2021) 2000343. https://doi.org/ 10.1002/lpor.202000343. DOI: https://doi.org/10.1002/lpor.202000343 https://doi.org/ 10.1002/lpor.202000343.">

Ou, J. Y., Plum, E., Jiang, L. and Zheludev, N. I. - Reconfigurable photonic metamaterials, Nano Lett. 11 (2011) 2142. https://doi.org/10.1021/nl200791r. DOI: https://doi.org/10.1021/nl200791r https://doi.org/10.1021/nl200791r.">

Ou, J. Y., Plum, E., Zhang, J. and Zheludev, N. I. - An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared, Nat. Nanotechnol. 8 (2013) 252-255. https://doi.org/10.1038/nnano.2013.25. DOI: https://doi.org/10.1038/nnano.2013.25 https://doi.org/10.1038/nnano.2013.25.">

Pham, T.-L., Xuan, K. B., Tung, B. S., Hai, L. D., Long, L. V., Lam, V. D. and Tung, N. T. - Origami-based stretchable bi-functional metamaterials: reflector and broadband absorber, J Phys. D Appl. Phys. 54 (2021). https://doi.org/165111. 10.1088/1361-6463/abdbe6. DOI: https://doi.org/10.1088/1361-6463/abdbe6 https://doi.org/165111. 10.1088/1361-6463/abdbe6.">

Masyukov, M, Grebenchukow, A. N., Livinov, E. A., Baldycheva, A., Vozianova, A. V. and Khodzitsky, M. K. - Photo-tunable terahertz absorber based on intercalated few-layer graphene, J Opt. 22 (2020) 095105. https://doi.org/10.1088/2040-8986/abaa60. DOI: https://doi.org/10.1088/2040-8986/abaa60 https://doi.org/10.1088/2040-8986/abaa60.">

Mou, N., Sun, S., Dong, H., Dong, S., He, Q., Zhou, L. and Zhang, L. - Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces, Opt. Express 26 (2018) 11728-11736. https://doi.org/10.1364/OE.26.011728. DOI: https://doi.org/10.1364/OE.26.011728 https://doi.org/10.1364/OE.26.011728.">

Jiang, Y., Xinguo, W., Wang, J. and Wang, J. - Tunable Terahertz absorber based on Bulk-Dirac-semimetal metasurface, IEEE Photonics J. 10 (2018) 4600607. https://doi.org/ 10.1109/JPHOT.2018.2866281 DOI: https://doi.org/10.1109/JPHOT.2018.2866281 https://doi.org/ 10.1109/JPHOT.2018.2866281">

Song, K., Wang, K., Li, J. and Liu, Q. H. - Broadband tunable terahertz absorber based on vanadium dioxide metamaterials, Opt. Express. 26 (2018) 7148-7154. https://doi.org/ 10.1364/OE.26.007148 DOI: https://doi.org/10.1364/OE.26.007148 https://doi.org/ 10.1364/OE.26.007148">

Zhang, HT., Zhang, L., Mukherjee, D. et al. - Wafer-scale growth of VO2 thin films using a combinatorial approach, Nat. Commun. 6 (2015), 8475. https://doi.org/10.1038/ ncomms9475. DOI: https://doi.org/10.1038/ncomms9475 https://doi.org/10.1038/ ncomms9475.">

Lei, L., Lou, F., Tao, K., Huang, H., Cheng, X. and Xu, P. - Tunable and

scalable broadband metamaterial absorber involving VO2 - based phase

transition, Photonics Res. 7 (2019) 734-741. https://doi.org/10.1364/PRJ.7.000734. DOI: https://doi.org/10.1364/PRJ.7.000734 https://doi.org/10.1364/PRJ.7.000734.">

Liu, M., Hwang, H., Tao, H. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial, Nature 487 (2012) 345-348. https://doi.org/10.1038/ nature11231. DOI: https://doi.org/10.1038/nature11231 https://doi.org/10.1038/ nature11231.">

Chen, J., Tang, F., Wang, X., Wu, J., Wu, Y., Ye, X., Wang, Y. and Yang, L. - High efficiency broadband near-infrared absorbers based on tunable SiO2-VO2-MoS2 multilayer metamaterials, Results Phys. 26 (2021) 104404. https://doi.org/10.1016/j.rinp.2021.104404. DOI: https://doi.org/10.1016/j.rinp.2021.104404 https://doi.org/10.1016/j.rinp.2021.104404.">

Yan, D., Meng, M., Li, J., Li, J. and Li, X. - Vanadium dioxide-assisted broadband absorption and linear-to-circular polarization conversion based on a single metasurface design for the terahertz wave, Opt. Express 28 (2020) 29843. https://doi.org/10.1364/OE.404829. DOI: https://doi.org/10.1364/OE.404829 https://doi.org/10.1364/OE.404829.">

Huang, J., Li, J., Yang, Y., Li, J., Li, J., Zhang, Y. and Yao, J. - Broadband terahertz absorber with a flexible, reconfigurable performance based on hybrid-patterned vanadium dioxide metasurfaces, Opt. Express 28 (2020) 17832-17840. https://doi.org/10.1364/OE.394359. DOI: https://doi.org/10.1364/OE.394359 https://doi.org/10.1364/OE.394359.">

Tian, J., Luo, H., Yang, Y., Ding, F., Qu, Y., Zhao, D., Qiu M. and Bozhevolnyi, S. I. - Active control of anapole states by structuring the phase-change alloy Ge2Sb¬2Te5, Nat. Commun. 10 (2019) 396. https://doi.org/10.1038/s41467-018-08057-1. DOI: https://doi.org/10.1038/s41467-018-08057-1 https://doi.org/10.1038/s41467-018-08057-1.">

Fang, L. W.-W., Zhao, R., Li, M., Lim, K.-G., Shi, L., Chong, T.-C. and Yeo, Y.-C. - Dependence of the properties of phase change random access memory on nitrogen doping concentration in Ge2Sb2Te5, J. Appl. Phys. 107 (2010) 104506. https://doi.org/10.1063/1.3383042 DOI: https://doi.org/10.1063/1.3383042 https://doi.org/10.1063/1.3383042">

Gholipour, B., Karvounis, A., Yin, J., Soci, C., MacDonald K. F. and Zheludev, N. I. - Phase-change-driven dielectric-plasmonic transitions in chalcogenide metasurfaces, NPG Asia Mater. 10, (2018) 533-539. https://doi.org/10.1038/s41427-018-0043-4. DOI: https://doi.org/10.1038/s41427-018-0043-4 https://doi.org/10.1038/s41427-018-0043-4.">

Mandal, A., Cui, Y., McRae L. and Gholipour, B. - Reconfigurable chalcogenide phase change metamaterials: A materials, device and fabrication perspective, JPhys. photonics 3 (2021) 022005. https://doi.org/10.1088/2515-7647/abe54d. DOI: https://doi.org/10.1088/2515-7647/abe54d https://doi.org/10.1088/2515-7647/abe54d.">

Galarreta1, C. R. de., Carrillo1, S. G.-C., Au, Y.-Y., Gemo, E., Trimby, L., Shields, J., Humphreys, E., Faneca, J., Cai, L., Baldycheva, A. - Tunable optical metasurfaces enabled by chalcogenide phase-change materials: from the visible to the THz, J. Opt. 22 (2020) 114001. https://doi.org/10.1088/2040-8986/abbb5b. DOI: https://doi.org/10.1088/2040-8986/abbb5b https://doi.org/10.1088/2040-8986/abbb5b.">

Downloads

Published

30-12-2022

How to Cite

[1]
N. T. Minh, “Metal-dielectric phase transition of VO2 assisted broadband and high-efficiency bifunctional metasurface in the terahertz frequency: Metal-dielectric phase transition of VO2 assisted broadband and high-efficiency bifunctional metasurface”, Vietnam J. Sci. Technol., vol. 60, no. 6, pp. 1078–1086, Dec. 2022.

Issue

Section

Materials

Most read articles by the same author(s)