Preparation of graft copolymers from Vietnam deproteinized natural rubber with acrylonitrile using tetraethylenepentamine and tert-butyl hydroperoxide radical initiators

Nguyen Thi Ngoc Anh, Phan Minh Quyet, Vu Trung Nam, Nguyen Quynh Vi, Than Van Hau, Tran Quang Tung, Nguyen Thu Ha, Nguyen Ngoc Mai, Tran Thi Thuy
Author affiliations

Authors

  • Nguyen Thi Ngoc Anh School of Chemistry and Life Sciences, Hanoi University of Science and Technology, No1. Dai Co Viet Street, Hai Ba Trung District, Ha Noi, Viet Nam
  • Phan Minh Quyet Department of Chemistry, School of Chemistry anđ Life Sciences, Hanoi University of Science and Technology, No1. Dai Co Viet Street, Hai Ba Trung District, Ha Noi, Viet Nam
  • Vu Trung Nam Department of Chemistry, School of Chemistry anđ Life Sciences, Hanoi University of Science and Technology, No1. Dai Co Viet Street, Hai Ba Trung District, Ha Noi, Viet Nam
  • Nguyen Quynh Vi Department of Chemistry, School of Chemistry anđ Life Sciences, Hanoi University of Science and Technology, No1. Dai Co Viet Street, Hai Ba Trung District, Ha Noi, Viet Nam
  • Than Van Hau Department of Chemistry, School of Chemistry anđ Life Sciences, Hanoi University of Science and Technology, No1. Dai Co Viet Street, Hai Ba Trung District, Ha Noi, Viet Nam
  • Tran Quang Tung Department of Chemistry, School of Chemistry anđ Life Sciences, Hanoi University of Science and Technology, No1. Dai Co Viet Street, Hai Ba Trung District, Ha Noi, Viet Nam
  • Nguyen Thu Ha Department of Chemistry, School of Chemistry anđ Life Sciences, Hanoi University of Science and Technology, No1. Dai Co Viet Street, Hai Ba Trung District, Ha Noi, Viet Nam https://orcid.org/0000-0002-1557-4571
  • Nguyen Ngoc Mai Department of Chemistry, School of Chemistry anđ Life Sciences, Hanoi University of Science and Technology, No1. Dai Co Viet Street, Hai Ba Trung District, Ha Noi, Viet Nam https://orcid.org/0000-0002-8560-3139
  • Tran Thi Thuy Department of Chemistry, School of Chemistry anđ Life Sciences, Hanoi University of Science and Technology https://orcid.org/0000-0003-0678-2085

DOI:

https://doi.org/10.15625/2525-2518/18494

Keywords:

acrylonitrile, deproteinzed natural rubber, graft copolymer, thermal gravimetric, tensile strength

Abstract

Natural rubber is an unsaturated natural elastomer with many superior properties such as high strength, outstanding resilience, and high elongation at break. However, it lacks in some properties due to the unsaturation of carbon-carbon double bonds in the natural rubber backbone causes easy degradation and poor thermal stability.  Many techniques have been made use of improving its thermo-mechanical properties. In this study, the graft copolymerization of acrylonitrile onto deproteinization natural rubber was investigated to increase the thermal and mechanical properties of natural rubber. This process was performed successfully in latex using tetraethylenepentamine and tert-butyl hydroperoxide as radical initiators at 30 °C. The effects of acrylonitrile concentration on the conversion and grafting efficiency of the graft copolymerization were studied. The structural characterization of the obtain graft copolymer was carried out by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy. The improvement in thermal properties of the obtained products was confirmed by Thermal Gravimetric Analysis/Differential Thermal Gravimetric Analysis, which showed that at the optimal condition for graft copolymerization was at acrylonitrile of 15 wt.% per kg of rubber, where the maximum degradation occurred at 377 °C. The mechanical properties of the products were also studied via tensile testing, where the tensile strength of the graft copolymerization using at AN of 15 wt.% per kg of rubber (1.5±0.5MPa), nearly tripled when compared to virgin deproteinized NR (3.8±0.9MPa).

Downloads

References

1. Nakao T., Kohjiya S. - Computer simulation of network formation in natural rubber (NR), Elsevier publisher, Japan, 2014, (In Japanese).

2. Guerra N. B., Pegorin G. S. A., Boratto M. H., de Barros N. R., de Oliveira Graeff C. F., Herculano R. D. - Biomedical applications of natural rubber latex from the rubber tree Hevea brasiliensis, Mater. Sci. Eng., C. 126 (2021) 112126. https://doi.org/10.1016/j.msec.2021.112126.

3. Floriano J. F., de Barros N. R., Cinman J. L. F., da Silva R. G., Loffredo A. V., Borges F. A., Norberto A. M. Q., Chagas A. L. D., Garms B. C., de Oliveira Graeff C. F. - Ketoprofen loaded in natural rubber latex transdermal patch for tendinitis treatment, J. Environ. Polym. Degrad. 26 (2018) 2281-2289. https://doi.org/10.1007/s10924-017-1127-x.

4. Benmesli S., Riahi F. - Dynamic mechanical and thermal properties of a chemically modified polypropylene/natural rubber thermoplastic elastomer blend, Polym. Test. 36 (2014) 54-61. http://dx.doi.org/10.1016/j.polymertesting.2014.03.016.

5. Dung T. A., Nhan N. T., Thuong N. T., Viet D. Q., Tung N. H., Nghia P. T., Kawahara S., Thuy T. T. - Dynamic mechanical properties of Vietnam modified natural rubber via grafting with styrene, Int. J. Polym. Sci. 2017 (2017). http://dx.doi.org/10.1155/2017/4956102.

6. Kovuttikulrangsie S., Sahakaro K., Intarakong C., Klinpituksa P. - PMMA blended and DPNR‐g‐PMMA coated DPNR and NR‐LA for dipping applications, J. Appl. Polym. Sci. 93 (2004) 833-844. http://dx.doi.org/10.1002/app.20535.

7. Mark H. F.- Encyclopedia of polymer science and technology, concise, 4th editon, John Wiley & Sons, Vol. 15 (2013) 12344.

8. Wongthong P., Nakason C., Pan Q., Rempel G. L., Kiatkamjornwong S. - Modification of deproteinized natural rubber via grafting polymerization with maleic anhydride, Eur. Polym. J. 49 (2013) 4035-4046. http://dx.doi.org/10.1016/j.eurpolymj.2013.09.009.

9. Dung T. A., Nhan N. T., Thuong N. T., Nghia P. T., Yamamoto Y., Kosugi K., Kawahara S., Thuy T. T. - Modification of Vietnam natural rubber via graft copolymerization with styrene, J. Braz. Chem. Soc. 28 (2017) 669-675. http://dx.doi.org/10.21577/0103-5053.20160217.

10. Saramolee P., Lopattananon N., Sahakaro K. - Preparation and some properties of modified natural rubber bearing grafted poly (methyl methacrylate) and epoxide groups, Eur. Polym. J. 56 (2014) 1-10. https://doi.org/10.1016/j.eurpolymj.2014.04.008.

11. Jiang Y., Wang J., Wu J., Zhang Y. - Preparation of high-performance natural rubber/carbon black/molybdenum disulfide composite by using the premixture of epoxidized natural rubber and cysteine-modified molybdenum disulfide, Polym. Bull. 78 (2021) 1213-1230. http://dx.doi.org/10.1007/s00289-020-03157-9.

12. Madhanagopal J., Singh O. P., Sornambikai S., Omar A. H., Sathasivam K. V., Fatihhi S. J., Abdul Kadir M. R. - Enhanced wide‐range monotonic piezoresistivity, reliability of Ketjenblack/deproteinized natural rubber nanocomposite, and its biomedical application, J. Appl. Polym. Sci. 134 (2017) http://dx.doi.org/10.1002/app.44981.

13. Wan L., Deng C., Zhao Z.-Y., Chen H., Wang Y.-Z. - Flame retardation of natural rubber: Strategy and recent progress, Polymers 12 (2020) 429. http://dx.doi.org/10.3390/polym12020429.

14. Mahittikul A., Prasassarakich P., Rempel G. - Noncatalytic hydrogenation of natural rubber latex, J. Appl. Polym. Sci. 103 (2007) 2885-2895. https://doi.org/10.1002/app.25449.

15. Mahittikul A., Prasassarakich P., Rempel G. - Diimide hydrogenation of natural rubber latex, J. Appl. Polym. Sci. 105 (2007) 1188-1199. https://doi.org/10.1002/app.25944.

16. Singha N. K., De P., Sivaram S. - Homogeneous catalytic hydrogenation of natural rubber using RhCl (PPh3) 3, J. Appl. Polym. Sci. 66 (1997) 1647-1652. https://doi.org/10.1002/(SICI)1097-4628(19971128)66:9%3C1647::AID-APP3%3E3.0.CO;2-D.

17. Hinchiranan N., Prasassarakich P., Rempel G. - Hydrogenation of natural rubber in the presence of OsHCl (CO)(O2)(PCy3) 2: kinetics and mechanism, J. Appl. Polym. Sci. 100 (2006) 4499-4514. https://doi.org/10.1002/app.22125.

18. Arroyo M., Lopez-Manchado M., Valentin J., Carretero J. - Morphology/behaviour relationship of nanocomposites based on natural rubber/epoxidized natural rubber blends, Compos. Sci. Technol. 67 (2007) 1330-1339. https://doi.org/10.1016/j.compscitech.2006.09.019.

19. Warren‐Thomas E., Dolman P. M., Edwards D. P. - Increasing demand for natural rubber necessitates a robust sustainability initiative to mitigate impacts on tropical biodiversity, Conserv. Lett. 8 (2015) 230-241. https://doi.org/10.1111/conl.12170.

20. Bhattacharya A., Misra B. N. - Grafting: a versatile means to modify polymers: techniques, factors and applications, Prog. Polym. Sci. 29 (2004) 767-814. http://dx.doi.org/10.1016/j.progpolymsci.2004.05.002s.

21. Choudhary S., Sharma K., Sharma V., Kumar V. - Grafting Polymers Reactive and Functional Polymers Volume Two: Modification Reactions, Compat. Blends. 2 (2020) 199-243. http://dx.doi.org/10.1007/978-3-030-45135-6.

22. Kumar D., Pandey J., Raj V., Kumar P. - A review on the modification of polysaccharide through graft copolymerization for various potential applications, Open J. Med. Chem. 11 (2017) 109-126. http://dx.doi.org/10.2174/1874104501711010109.

23. Kochthongrasamee T., Prasassarakich P., Kiatkamjornwong S. - Effects of redox initiator on graft copolymerization of methyl methacrylate onto natural rubber, J. Appl. Polym. Sci. 101 (2006) 2587-2601. https://doi.org/10.1002/app.23997.

24. Nakason C., Kaesaman A., Yimwan N. - Preparation of graft copolymers from deproteinized and high ammonia concentrated natural rubber latices with methyl methacrylate, J. Appl. Polym. Sci. 87 (2003) 68-75. https://doi.org/10.1002/app.11671.

25. Nguyen T. N., Duy H. N., Anh D. T., Thi T. N., Nguyen T. H., Van N. N., Quang T. T., Huy T. N., Thi T. T. - Improvement of thermal and mechanical properties of vietnam deproteinized natural rubber via graft copolymerization with methyl methacrylate, Int. J. Polym. Sci. 2020 (2020) https://doi.org/10.1155/2020/9037827.

26. Nhan N. T., Dung T. A., Khanh P. D., Thuong N. T., Tung N. H., Nghia P. T., Thuy T. T. - Investigation of cure and mechanical properties of deproteined natural rubber-g-poly (methyl methacrylate), Vietnam J. Chem. 54 (2016) 520-520. http://dx.doi.org/10.15625/0866-7144.2016-00358.

27. Nakason C., Kaesaman A., Supasanthitikul P. - The grafting of maleic anhydride onto natural rubber, Polym. Test. 23 (2004) 35-41. https://doi.org/10.1016/S0142-9418(03)00059-X.

28. Fukuhara L., Kado N., Thuong N., Loykulant S., Suchiva K., Kosugi K., Yamamoto Y., Ishii H., Kawahara S. - Nanomatrix structure formed by graft copolymerization of styrene onto fresh natural rubber, Rubber Chem. Technol. 88 (2015) 117-124. https://doi.org/10.5254/rct.14.85992.

29. Pukkate N., Kitai T., Yamamoto Y., Kawazura T., Sakdapipanich J., Kawahara S. - Nano-matrix structure formed by graft-copolymerization of styrene onto natural rubber, Eur. Polym. J. 43 (2007) 3208-3214. https://doi.org/10.1016/j.eurpolymj.2007.04.037.

30. Rimdusit N., Jubsilp C., Mora P., Hemvichian K., Thuy T. T., Karagiannidis P., Rimdusit S. - Radiation graft-copolymerization of ultrafine fully vulcanized powdered natural rubber: effects of styrene and acrylonitrile contents on thermal stability, Polymers 13 (2021) 3447. http://dx.doi.org/10.3390/polym13193447.

31. Kawahara S., Klinklai W., Kuroda H., Isono Y. - Removal of proteins from natural rubber with urea, Polym. Adv. Technol. 15 (2004) 181-184. http://dx.doi.org/10.1002/pat.465.

32. Yamamoto Y., Suksawad P., Pukkate N., Horimai T., Wakisaka O., Kawahara S. - Photoreactive nanomatrix structure formed by graft‐copolymerization of 1, 9‐nonandiol dimethacrylate onto natural rubber, J. Polym. Sci. Part A: Polym. Chem. 48 (2010) 2418-2424. http://dx.doi.org/10.1002/pola.24011.

33. Nguyen Duy H., Rimdusit N., Tran Quang T., Phan Minh Q., Vu Trung N., Nguyen T. N., Nguyen T. H., Rimdusit S., Ougizawa T., Tran Thi T. - Improvement of thermal properties of Vietnam deproteinized natural rubber via graft copolymerization with styrene/acrylonitrile and diimide transfer hydrogenation, Polym. Adv. Technol. 32 (2021) 736-747. http://dx.doi.org/10.1002/pat.5126.

34. Kawahara S., Kawazura T., Sawada T., Isono Y. - Preparation and characterization of natural rubber dispersed in nano-matrix, Polymer 44 (2003) 4527-4531. http://dx.doi.org/10.1016/S0032-3861(03)00415-4.

35. Yusof N. H., Kosugi K., Song T. K., Kawahara S. - Preparation and characterization of poly (stearyl methacrylate) grafted natural rubber in latex stage, Polymer 88 (2016) 43-51. https://doi.org/10.1016/j.polymer.2016.02.005.

36. Angnanon S., Prasassarakich P., Hinchiranan N. - Styrene/acrylonitrile graft natural rubber as compatibilizer in rubber blends, Polym.-Plast. Technol. Eng. 50 (2011) 1170-1178. http://dx.doi.org/10.1080/03602559.2011.574667.

37. Nallasamy P., Mohan S. - Vibrational spectra of cis-1, 4-polyisoprene, Arab. J. Sci. Eng. 29 (2004) 17-26. https://www.researchgate.net/publication/229050232_Vibrational_Spectra_of_Cis-1_4-Polyisoprene.

38. Rolere S., Liengprayoon S., Vaysse L., Sainte-Beuve J., Bonfils F. - Investigating natural rubber composition with Fourier Transform Infrared (FT-IR) spectroscopy: A rapid and non-destructive method to determine both protein and lipid contents simultaneously, Polym. Test. 43 (2015) 83-93. https://doi.org/10.1016/j.polymertesting.2015.02.011.

39. Banerjee A., Ray S. K. - Nitrocellulose filled and natural rubber grafted poly (styrene-co-acrylonitrile) organophilic membranes for pervaporative recovery of aliphatic alcohols from water, Sep. Purif. Technol. 266 (2021) 118563. https://doi.org/10.1016/j.seppur.2021.118563.

40. Derouet D., Tran Q. N., Leblanc J.-L. - Physical and mechanical properties of poly (methyl methacrylate)‐grafted natural rubber synthesized by methyl methacrylate photopolymerization initiated by N, N‐diethyldithiocarbamate functions previously created on natural rubber chains, J. Appl. Polym. Sci. 112 (2009) 788-799. https://doi.org/10.1002/app.29443.

41. Ha N. T., Kaneda K., Naitoh Y., Fukuhara L., Kosugi K., Kawahara S. - Preparation and graft‐copolymerization of hydrogenated natural rubber in latex stage, J. Appl. Polym. Sci. 132 (2015) https://doi.org/10.1002/app.42435.

42. Cui Y., Xiang Y., Xu Y., Wei J., Zhang Z., Li L., Li J. - Poly-acrylic acid grafted natural rubber for multi-coated slow release compound fertilizer: Preparation, properties and slow-release characteristics, Int. J. Biol. Macromol. 146 (2020) 540-548. https://doi.org/10.1016/j.ijbiomac.2020.01.051.

43. Arayapranee W., Rempel G. L. - Morphology and mechanical properties of natural rubber and styrene‐grafted natural rubber latex compounds, J. Appl. Polym. Sci. 109 (2008) 1395-1402. https://doi.org/10.1002/app.28217.

44. Nguyen Thi Ngoc A., Vu Trung N., Pham D. K., Phan Minh Q., Than Van H., Nguyen Thi Q., Tran Quang T., Nguyen T. H., Nguyen M. N., Tran Thi T. - Improvement in thermal and mechanical properties of Vietnam deproteinized natural rubber via graft copolymerization with styrene/acrylonitrile and diimide transfer hydrogenation, Polym. Bull. 81 (2024) 871-886. http://dx.doi.org/10.1007/s00289-023-04705-9.

Downloads

Published

28-02-2025

How to Cite

[1]
A. Nguyen Thi Ngoc, “Preparation of graft copolymers from Vietnam deproteinized natural rubber with acrylonitrile using tetraethylenepentamine and tert-butyl hydroperoxide radical initiators”, Vietnam J. Sci. Technol., vol. 63, no. 1, pp. 40–51, Feb. 2025.

Issue

Section

Materials