A hydrothermal pathway for TiO2-rGO heterojunction nanocomposite to enhance hydrogen peroxide evolution

Tong Hoang Lin, Le Minh Huong, Che Quang Cong, Nguyen Thanh Hoai Nam, Nguyen Tan Thinh, Doan Thi Yen Oanh, Nguyen Huu Hieu
Author affiliations

Authors

  • Tong Hoang Lin 1VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam 2Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam 3Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Viet Nam
  • Le Minh Huong 1VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam 2Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam 3Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Viet Nam
  • Che Quang Cong 1VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam 2Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam 3Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Viet Nam
  • Nguyen Thanh Hoai Nam 1VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam 2Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam 3Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Viet Nam
  • Nguyen Tan Thinh 1VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam 2Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam 3Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Viet Nam
  • Doan Thi Yen Oanh Publishing House for Science Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
  • Nguyen Huu Hieu 1VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam 2Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam 3Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Viet Nam

DOI:

https://doi.org/10.15625/2525-2518/18365

Keywords:

Titanium dioxide, Reduced graphene oxide, Band gap, Hydrogen peroxide

Abstract

In this study, titanium dioxide-reduced graphene oxide (TiO2-rGO(TGO)) nanocomposite was synthesized via hydrothermal pathway. The characterization of the fabricated material revealed an efficient incorporation of the two constituents, as well as a notable decrease in the band gap energy of TGO compared to that of pristine TiO2 (2.62 versus 3.15 eV, respectively), which can expand the absorption spectrum of the catalyst towards the visible region. Electrochemical studies also elucidated the contribution of the rGO substrate in prolonging the recombination rate of charge carriers, signifying a noticeable enhancement in the photocatalytic capability of the TGO composite. Meanwhile, the hydrogen peroxide evolution performance of the synthesized photocatalyst was relatively promising with a concentration of up to 158.34 μM after 180 min. Along with further examinations additionally showing the plausible formation and participation of reactive oxygen radicals during the photocatalytic scheme, the TGO material indicates a good potential for several practical applications, especially the generation of hydrogen peroxide under light irradiation.

Downloads

References

1. Ahmed S., Islam M. T., Karim M. A., Karim N. M. - Exploitation of renewable energy for sustainable development and overcoming power crisis in Bangladesh, Renew Energy 72 (2014) 223-235. https://doi.org/10.1016/j.renene.2014.07.003.

2. Lazarus M., Van Asselt. H. - Fossil fuel supply and climate policy: exploring the road less taken, Clim Change 150 (2018) 1-13. https://doi.org/10.1007/s10584-018-2266-3.

3. El Ouardi M., El aouni A., Ait Ahsaine H., Zbair M., Ba Qais A., Saadi M. - ZIF-8 metal organic framework composites as hydrogen evolution reaction photocatalyst: A review of the current state, Chemosphere 308 (2022) 136483. https://doi.org/10.1016/ j.chemosphere.2022.136483.

4. Pasqualetti M. J. - Social Barriers to Renewable Energy Landscapes, Geographical review 101 (2011) 201-223. https://doi.org/10.1111/j.1931-0846.2011.00087.x.

5. Mulder F. M., Weninger B. M. H., Middelkoop J., Ooms F. G. B., Schreuders H. - Efficient electricity storage with a battolyser, an integrated Ni-Fe battery and electrolyser. Energy & Environmental Science 10 (3) (2017) 756-764. https://doi.org/10.1039/ C6EE02923J.

6. Chen J., Symes M.D., Cronin, L. - Highly reduced and protonated aqueous solutions of 6− for on-demand hydrogen generation and energy storage, Nature chemistry 10 (2018) 1042-1047. https://doi.org/10.1038/s41557-018-0109-5.

7. Goldbach A., Bao F., Qi C., Bao C., Zhao L., Hao C., Jiang C., Xu H. - Evaluation of Pd composite membrane for pre-combustion CO2 capture, International Journal of Greenhouse Gas Control 33 (2015) 69-76. https://doi.org/10.1016/j.ijggc.2014.12.003.

8. Wang Y., Chen B., Seo D. H., Han Z. J., Wong J. I., Ostrikov K., Zhang H., Yang H. Y. - MoS2-coated vertical graphene nanosheet for high-performance rechargeable lithium-ion batteries and hydrogen production, NPG Asia Materials 8 (5) (2016) e268-e268. https://doi.org/10.1038/am.2016.44.

9. Cifuentes B., Bustamante F., Conesa J. A., Córdoba L. F., Cobo M. - Fuel-cell grade hydrogen production by coupling steam reforming of ethanol and carbon monoxide removal, Elsevier 43 (2018) 17216-17229. https://doi.org/10.1016/j.ijhydene.2018.07.139.

10. Iulianelli A., Basile A. - Special issue on "Hydrogen separation/purification via membrane technology", International Journal of Hydrogen Energy 45 (12) (2020) 7265-7265. doi:10.1016/j.ijhydene.2019.10.054.

11. Chen F., Dong S., Wang Z., Xu J., Xu R., Wang J. - Preparation of mixed matrix composite membrane for hydrogen purification by incorporating ZIF-8 nanoparticles modified with tannic acid, International Journal of Hydrogen Energy 45 (12) (2020) 7444-7454. https://doi.org/10.1016/j.ijhydene.2019.04.050.

12. Wornat M. J., Porter B. G., Yang N. Y. C. - Single Droplet Combustion of Biomass Pyrolysis Oils, Energy and Fuels 8 (1994) 1131-1142. https://doi.org/ 10.1021/EF00047A018.

13. Zaleska A. - Doped-TiO2: A Review, Recent Patents on Engineering 2 (2008) 157-164. https://doi.org/10.2174/187221208786306289.

14. Thompson T. L., Yates J. T. - Surface Science Studies of the Photoactivation of TiO2 New Photochemical Processes, Chemical reviews 106 (2006) 4428-4453. https://doi.org/ 10.1021/cr050172k.

15. Guex L. G., Sacchi B., Peuvot K. F., Andersson R. L., Pourrahimi A. M., Ström V., Farris S., Olsson R. T. - Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry, Nanoscale 9 (2017) 9562-9571. https://doi.org/10.1039/C7NR02943H.

16. Mondal A., Prabhakaran A., Gupta S., Subramanian V. R. - Boosting Photocatalytic Activity Using Reduced Graphene Oxide (RGO)/Semiconductor Nanocomposites: Issues and Future Scope, ACS Omega 6 (2021) 8734-8743. https://doi.org/10.1021/ acsomega.0c06045.

17. Trinh T. T. P. N. X., Long N. H. B. S., Quang D. T., Hieu N. H. - Synthesis of graphene aerogel for adsorption of bisphenol A, In AIP Conference Proceedings 1954 (2018) 20003. https://doi.org/10.1063/1.5033383.

18. Trinh D. N., Viet T. Q. Q., Nhu T. H., Dat N. M., Thinh D. B., Hai N. D., Tai L. T., Oanh D. T. Y., Khoi V. H., Nam H. M. - Binary TiO2/reduced graphene oxide nanocomposite for improving methylene blue photodegradation, Vietnam Journal of Chemistry 59 (2021) 395-404. https://doi.org/10.1002/vjch.202100009.

19. Viet T. Q. Q., Nhu T. H., Thinh D. B., Trinh D. N., Giang N. T. H., Dat N. M., Hai N. D., Nam H. M., Phong M. T., Hieu N. H. - Optimization of TiO2 immobilized - Reduce graphene oxide photocatalyst toward organic compounds in aqueous medium, Synthetic Metals 280 (2021) 116867. https://doi.org/10.1016/j.synthmet.2021.116867.

20. Trinh T. T. P. N. X., Trinh D. N., Cuong D. C., Hai N. D., Huong L. M., Thinh D. B., Hoa H. N., Cong C. Q., Nam N. T. H., An H., Khoa T. D., Viet V. N. D., Phong M. T., Hieu N. H. - Optimization of crystal violet photodegradation and investigation of the antibacterial performance by silver-doped titanium dioxide/graphene aerogel nanocomposite, Ceramics International 49 (2023) 20234-20250. https://doi.org/10.1016/ j.ceramint.2023.03.147.

21. Xiong J., Li X., Huang J., Gao X., Chen Z., Liu J., Li H., Kang B., Yao W., Zhu Y. - CN/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H2O2 production, Applied Catalysis B: Environmental 266 (2020) 118602. https://doi.org/10.1016/j.apcatb.2020.118602.

22. Tomita O., Otsubo T., Higashi M., Ohtani B., Abe R. - Partial Oxidation of Alcohols on Visible-Light-Responsive WO3 Photocatalysts Loaded with Palladium Oxide Cocatalyst, ACS Catalysis 6 (2016) 1134-1144. https://doi.org/10.1021/acscatal.5b01850.

23. Lu K. Q., Xin X., Zhang N., Tang Z. R., Xu Y. J. - Photoredox catalysis over graphene aerogel-supported composites, Journal of Materials Chemistry A 6 (2018) 4590-4604. https://doi.org/10.1039/C8TA00728D.

24. Ahmadi N., Nemati A., Bagherzadeh M. - Synthesis and properties of Ce-doped TiO2-reduced graphene oxide nanocomposite, Journal of Alloys and Compounds 742 (2018) 986-995. https://doi.org/10.1016/j.jallcom.2018.01.105.

25. Dat N. M., Cong C. Q., Hai N. D., Huong L. M., Nam N. T. H., Tinh D. Q., Tai L. T., An H., Duy M. Q., Phong M. T., Hieu N. H. - Facile Synthesis of Eco‐Friendly Silver@Graphene Oxide Nanocomposite for Optical Sensing, ChemistrySelect 8 (2023). https://doi.org/10.1002/slct.202204183.

26. Zhou G., Wang D. W., Yin L. C., Li N., Li F., Cheng H. M. - Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage, ACS Nano 6 (2012) 3214-3223. https://doi.org/10.1021/nn300098m.

27. Khamboonrueang D., Srirattanapibul S., Tang I. M., Thongmee S. - TiO2∙rGO nanocomposite as a photo catalyst for the reduction of Cr6+, Materials Research Bulletin 107 (2018) 236-241. https://doi.org/10.1016/j.materresbull.2018.07.002.

28. Orooji Y., Tanhaei B., Ayati A., Tabrizi S. H., Alizadeh M., Bamoharram F. F., Karimi F., Salmanpour S., Rouhi J., Afshar S., Sillanpää M., Darabi R., Karimi-Maleh H. - Heterogeneous UV-Switchable Au nanoparticles decorated tungstophosphoric acid/TiO2 for efficient photocatalytic degradation process, Chemosphere 281 (2021) 130795.

https://doi.org/10.1016/j.chemosphere.2021.130795.

29. Komaraiah D., Radha E., Sivakumar J., Reddy M. R., Sayanna R. - Photoluminescence and photocatalytic activity of spin coated Ag+ doped anatase TiO2 thin films, Optical Materials 108 (2020) 110401. https://doi.org/10.1016/j.optmat.2020.110401.

30. Van Bao H., Dat N. M., Giang N. T. H., Thinh D. B., Tai L. T., Trinh D. N., Hai N. D., Khoa N. A. D., Huong L. M., Nam H. M., Phong M. T., Hieu N. H. - Behavior of ZnO-doped TiO2/rGO nanocomposite for water treatment enhancement, Surfaces and Interfaces 23 (2021) 100950. https://doi.org/10.1016/j.surfin.2021.100950.

31. An H., Huong L. M., Dat N. M., Hai N. D., Cong C. Q., Nam N. T. H., Tai L. T., Thi D. N. M., Nghi H. B., Huyen N. T. T., Oanh D. T. Y., Phong M. T., Hieu N. H. - Photocatalytic degradation of organic dyes using zinc oxide-decorated graphitic carbon nitride composite under visible light, Diamond and Related Materials 131 (2023) 109583. https://doi.org/10.1016/j.diamond.2022.109583.

32. Guo X., Duan J., Li C., Zhang Z., Wang W. - Highly efficient Z-scheme g-C3N4/ZnO photocatalysts constructed by co-melting-recrystallizing mixed precursors for wastewater treatment, Journal of Materials Science 55 (2020) 2018-2031. https://doi.org/10.1007/ s10853-019-04097-0.

33. Geng X., Wang L., Zhang L., Wang H., Peng Y., Bian Z. - H2O2 production and in situ sterilization over a ZnO/g-C3N4 heterojunction photocatalyst, Chemical Engineering Journal 420 (2021) 129722. https://doi.org/10.1016/j.cej.2021.129722.

34. Gnanaseelan N., Latha M., Mantilla A., Sathish-Kumar K., Caballero-Briones F. - The role of redox states and junctions in photocatalytic hydrogen generation of MoS2-TiO2-rGO and CeO2-Ce2Ti3O8.7-TiO2-rGO composites, Materials Science in Semiconductor Processing 118 (2020) 105185. https://doi.org/10.1016/j.mssp.2020.105185.

35. Xiong J., Li X., Huang J., Gao X., Chen Z., Liu J., Li H., Kang B., Yao W., Zhu Y. - CN/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H2O2 production, Applied Catalysis B: Environmental 266 (2020) 118602. https://doi.org/10.1016/j.apcatb.2020.118602.

36. Yang Y., Zeng Z., Zeng G., Huang D., Xiao R., Zhang C., Zhou C., Xiong W., Wang W., Cheng M., Xue W., Guo H., Tang X., He D. - Ti3C2 Mxene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production, Applied Catalysis B: Environmental 258 (2019) 117956. https://doi.org/10.1016/j.apcatb.2019.117956.

37. Lu N., Liu N., Hui Y., Shang K., Jiang N., Li J., Wu Y. - Characterization of highly effective plasma-treated g-C3N4 and application to the photocatalytic H2O2 production, Chemosphere 241 (2020) 124927. https://doi.org/10.1016/j.chemosphere.2019.124927.

Downloads

Published

28-02-2025

How to Cite

[1]
T. Hoang Lin, “A hydrothermal pathway for TiO2-rGO heterojunction nanocomposite to enhance hydrogen peroxide evolution”, Vietnam J. Sci. Technol., vol. 63, no. 1, pp. 63–74, Feb. 2025.

Issue

Section

Materials