Some new fuzzy query processing methods based on similarity measurement and fuzzy data clustering
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/18222Keywords:
Fuzzy oriented object language, fuzzy query processing, Similarity measurementAbstract
In relational and object-oriented database systems there is always data that is naturally fuzzy or uncertain. However, to deal with complex data types with fuzzy nature, these systems have many limitations. Therefore, in order to represent and manage fuzzy data, it is necessary to have a fuzzy interrogation system to facilitate non-expert users. To solve this challenge, the paper proposes two different approaches to increase the flexibility of the fuzzy interrogation system. Firstly, based on similarity measures and fuzzy logic, we develop three fuzzy query processing algorithms for single-condition and multi-condition cases such as FQSIMSC (Fuzzy Query Sim Single Condition), FQSIMMC (Fuzzy Query Sim Multi-Condition) and FQSEM (Fuzzy Query SEM). Secondly, we combine the fuzzy clustering algorithm EMC (Expectation maximization Coefficient) and the query processing algorithm that is based on fuzzy partitions FQINTERVAL (Fuzzy Query Interval). With this approach, we not only improve query processing cost but also support applications and devices equipped with intelligent interactive function that easily interacts with the fuzzy query system. The results of our theoretical and experimental analysis, it can be seen that both the proposed methods significantly reduce the processing time and memory space for a data set (extracted from UCI) that has a fuzzy and incomplete natural element with the resulting data size being optimal
Downloads
References
Date C. J., and Warden A. - Relational database writings (1985–1989), Addison-Wesley Longman Publishing Co., Inc, 1990.
Ilyas I. F., Beskales G., and Soliman M. A. - A survey of top-k query processing techniques in relational database systems, ACM Computing Surveys (CSUR) 40 (4) (2008) 1-58. https://doi.org/10.1145/1391729.1391730. DOI: https://doi.org/10.1145/1391729.1391730
De Tré G., De Caluwe R., and B der Cruyssen. - A generalised object-oriented database model, Recent issues fuzzy databases (2000) 155-182. https://doi.org/10.1007/978-3-7908-1845-1_8. DOI: https://doi.org/10.1007/978-3-7908-1845-1_8
Bertino E. and Martino L. - Object-oriented database management systems: concepts and issues, Computer (Long. Beach. Calif) 24 (4) (1991) 33-47. https://doi.org/10.1109/ 2.76261. DOI: https://doi.org/10.1109/2.76261
Deng W. - Object-Oriented Database and O/R Mapping Technology, in Big Data Analytics for Cyber-Physical System in Smart City: BDCPS 2020, 28-29 December 2020, Shanghai, China (2021) 800-806. https://doi.org/10.1007/978-981-33-4572-0_115. DOI: https://doi.org/10.1007/978-981-33-4572-0_115
Simon J. P. - Scope, players, markets and geography, Digit. Policy, Regul. Gov., Artificial intelligence (2019). https://doi.org/10.1108/DPRG-08-2018-0039. DOI: https://doi.org/10.1108/DPRG-08-2018-0039
Expósito Solis A. and others - Implementation of a Telegram chatbox and webplatform for hypertension, 2020.
Liu C., Li X., Li Q., Xue Y., Liu H., and Gao Y. - Robot recognizing humans intention and interacting with humans based on a multi-task model combining ST-GCN-LSTM model and YOLO model, Neurocomputing 430 (2021) 174-184. https://doi.org/10.1016/ j.neucom.2020.10.016 DOI: https://doi.org/10.1016/j.neucom.2020.10.016
Gupta M. M. and Yamakawa T. - Fuzzy logic in knowledge-based systems, decision and control, Elsevier Science Inc. (1988). https://doi.org/10.1109/40.566209. DOI: https://doi.org/10.1109/40.566209
Zadeh L. A. - Fuzzy probabilities, in Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A Zadeh, World Scientific, 1996, pp. 643-652. DOI: https://doi.org/10.1142/9789814261302_0030
Durrett R. - Probability: theory and examples, Cambridge university press 49 (2019). DOI: https://doi.org/10.1017/9781108591034
Cheng C. B., Shih H. S., and Lee E. S. - Possibility Theory and Fuzzy Optimization, in Fuzzy and Multi-Level Decision Making: Soft Computing Approaches, Springer, 2019, pp. 73-88. DOI: https://doi.org/10.1007/978-3-319-92525-7_3
Umano M., Imada T., Hatono I., and Tamura H. - Fuzzy object-oriented databases and implementation of its SQL-type data manipulation language, in 1998 IEEE International Conference on Fuzzy Systems Proceedings, IEEE World Congress on Computational Intelligence (Cat. No. 98CH36228) 2 (1998) 1344-1349. https:// doi.org/ 10.1109/ FUZZY.1998.686314.
Bordogna G., Pasi G., and Lucarella D. - A fuzzy object-oriented data model for managing vague and uncertain information, Int. J. Intell. Syst. 14 (7) (1999) 623-651. https://doi.org/10.1002/(SICI)1098-111X(199907)14:7<623::AID-INT1>3.0.CO;2-G. DOI: https://doi.org/10.1002/(SICI)1098-111X(199907)14:7<623::AID-INT1>3.0.CO;2-G
Van Gyseghem N. and De Caluwe R. - Imprecision and uncertainty in the UFO database model, J. Am. Soc. Inf. Sci. 49 (3) (1998) 236–252. https://doi.org/10.1002/(SICI)1097-4571(199803)49:3<236::AID-ASI5>3.0.CO;2-B. DOI: https://doi.org/10.1002/(SICI)1097-4571(1998)49:3<236::AID-ASI5>3.0.CO;2-#
Wedashwara W., Mabu S., Obayashi M., and Kuremoto T. - Evolutionary rule based clustering for making fuzzy object oriented database models, in 2015 IIAI 4th International Congress on Advanced Applied Informatics (2015) 517-522. https://doi.org/10.1109/IIAI-AAI.2015.167. DOI: https://doi.org/10.1109/IIAI-AAI.2015.167
Srivastava A., Yadav S., Srivastava N., and Khan Z. - Fuzzy Query, An Impression in Query processing, 2016.
Drissi A., Nait-Bahloul S., Benouaret K., and Benslimane D. - Horizontal fragmentation for fuzzy querying databases, Distrib, Parallel Databases 37 (3) (2019) 441-468. https://doi.org/10.1007/s10619-018-7250-4 DOI: https://doi.org/10.1007/s10619-018-7250-4
Zeng Y., Zhou Y., Zhou X., and Zheng F. - Fuzzy clustering-based skyline query preprocessing algorithm for large-scale flow data analysis, J. Supercomput 76 (2) (2020) 1321-1330. https://doi.org/10.1007/s11227-018-2523-2. DOI: https://doi.org/10.1007/s11227-018-2523-2
Mama R. and Machkour M. - Fuzzy Questions for Relational Systems, in The Proceedings of the Third International Conference on Smart City Applications (2019) 104-114. https://doi.org/10.1007/978-3-030-37629-1_9. DOI: https://doi.org/10.1007/978-3-030-37629-1_9
Liefke K. and Werning M. - Evidence for Single-Type Semantics An Alternative To/-Based Dual-Type Semantics, J. Semant 35 (4) (2018) 639-685. https://doi.org/10.1093/ jos/ffy009.
Ma Z. M., Zhang W. J., and Ma W. Y. - Assessment of data redundancy in fuzzy relational databases based on semantic inclusion degree, Inf. Process. Lett. 72 (1–2) (1999) 25-29. https://doi.org/10.1016/S0020-0190(99)00124-6. DOI: https://doi.org/10.1016/S0020-0190(99)00124-6
Rahman K., Abdullah S., Ali A., and Amin F. - Interval-valued Pythagorean fuzzy Einstein hybrid weighted averaging aggregation operator and their application to group decision making, Complex & Intell. Syst. 5 (1) (2019) 41-52. https://doi.org/ 10.1007/s40747-018-0076-x. DOI: https://doi.org/10.1007/s40747-018-0076-x
Dwibedy D., Sahoo L., and Dutta S. - A New Approach to Object Based Fuzzy Database Modeling, Int. J. Soft Comput. Eng. 3 (1) (2013) 182-186. https://doi.org/10.35940/ijsce DOI: https://doi.org/10.35940/ijsce
Singpurwalla N. D. and Booker J. M. - Membership functions and probability measures of fuzzy sets, J. Am. Stat. Assoc. 99 (467) (2004) 867-877. https://doi.org/10.1198/ 016214504000001196. DOI: https://doi.org/10.1198/016214504000001196
Nguyen T. T., Van Doan B., Truong C. N., and Tran T. T. T. - Clustering and query optimization in fuzzy object-oriented database, Int. J. Nat. Comput. Res. 8 (1) (2019) 1-17. https://doi.org/ 10.4018/IJNCR.2019010101. DOI: https://doi.org/10.4018/IJNCR.2019010101
Bashon Y., Neagu D., and Ridley M. J. - A new approach for comparing fuzzy objects, in International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (2010) 115-125. https://doi.org/10.1007/978-3-642-140587_12. DOI: https://doi.org/10.1007/978-3-642-14058-7_12
Ma Z. M. - Object comparison in fuzzy object-oriented databases, In 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems 3 (2009) 672-675. https://doi.org/10.1109/ICICISYS.2009.5358091. DOI: https://doi.org/10.1109/ICICISYS.2009.5358091
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.