Biosynthesis uses, and defensive mechanisms of kauralexins and zealexins against fungi that attack maize (Zea mays) crops- An Review
Biosynthesis uses, and defensive mechanisms of kauralexins and zealexins against fungi that attack maize (Zea mays) crops
Author affiliations
DOI:
https://doi.org/10.15625/2525-2518/18104Keywords:
Phytoalexin, fungal disease, kauralexin biosynthesis, secondary metabolites, metabolomics, plant-fungus interactionAbstract
Fungal pathogens have a high effect on maize crops, where it leads to heavy loss of yield production globally. Secondary metabolites are biochemical compounds that play a crucial role in the stress and defense mechanism of plants. It controls several biotic and abiotic stresses and their related side effects. The fungi cause high-impact diseases to bio-organisms such as plants, animals, and humans. Evidently, throughout the world, a notable feed and used industrial product source is "Corn". Earlier studies have shown diverse approaches in plant defense mechanisms for plant growth and development. Here, we can see short-overview about the phytoalexin derivatives namely labdane-type diterpenoids kauralexins and acidic sesquiterpenoids zealexins biosynthesis, mode of action against fungal pathogens in maize crops. Additionally, past and current trend approach on plant-pathogen interactions used bioinformatics and metabolomic tools approach for disease resistance, database tools of plant metabolomics, and especially focused on resources database tools of plant-fungus interactions. Furthermore, this review is to pointout the “Phytoalexins” derivative bioactive diterpenoid compounds of kauralexins & zealexins antifungal defense mechanisms in maize (Z.mays) crops.
Downloads
References
1. Godfray H. C., Mason-D'Croz D., and Robinson S. - Food system consequences of a fungal disease epidemic in a major crop, Philos Trans R Soc. Lond B Biol. Sci. 371 (1709). https://doi.org/10.1098/rstb.2015.0467
2. Tyanova S., Temu T., and Cox J. - The MaxQuant computational platform for mass spectrometry-based shotgun proteomics, Nat. Protoc. 11 (12) (2016) 2301-2319. https://doi.org/10.1038/nprot.2016.136
3. Ranum P., Pena-Rosas J. P., and Garcia-Casal M. N. - Global maize production, utilization, and consumption, Ann. N. Y. Acad. Sci. 1312 (2014) 105-112. https://doi.org/ 10.1111/nyas.12396
4. FAO - Crop Prospects and Food Situation - Quarterly Global Report No. 1, March 2020. Rome. https://doi.org/10.4060/ca8032en
5. George N. Agrios - PlantPathology, Fifth Edition, Elsevier Academic Press, London, U.K., 2005.
6. Pusztahelyi T., Holb I. J., and Pocsi I. - Secondary metabolites in fungus-plant interactions, Front Plant Sci. 6 (2015) 573. https://doi.org/10.3389/fpls.2015.00573
7. Hiruma K. - Roles of Plant-Derived Secondary Metabolites during Interactions with Pathogenic and Beneficial Microbes under Conditions of Environmental Stress, Microorganisms 7 (9) (2019). https://doi.org/10.3390/microorganisms7090362
8. Pusztahelyi T., Holb I. J., and Pócsi I. - Plant-Fungal Interactions: Special Secondary Metabolites of the Biotrophic, Necrotrophic, and Other Specific Interactions, In: Fungal Metabolites (2016) 1-58. https://doi.org/10.1007/978-3-319-19456-1_39-1
9. Murphy K. M. and Zerbe P. - Specialized diterpenoid metabolism in monocot crops: Biosynthesis and chemical diversity, Phytochemistry 172 (2020) 112289. https://doi.org/ 10.1016/j.phytochem.2020.112289
10. Anna K., Jager S. H. F. - Correlation between Plant Secondary Metabolites and Their Antifungal Mechanisms A Review, Medicinal & Aromatic Plants 03 (02) (2014). https://doi.org/10.4172/2167-0412.1000154
11. Ahuja I., Kissen R., and Bones A. M. - Phytoalexins in defense against pathogens, Trends Plant Sci. 17 (2) (2012) 73-90. https://doi.org/10.1016/j.tplants.2011.11.002
12. Pusztahelyi T., Holb I. J., Pócsi I. - Plant-Fungal Interactions: Special Secondary Metabolites of the Biotrophic, Necrotrophic, and Other Specific Interactions, In: Mérillon JM., Ramawat K. (Eds.), Fungal Metabolites, Reference Series in Phytochemistry, Springer, Cham., 2017. https://doi.org/10.1007/978-3-319-25001-4_39
13. Castro-Moretti F. R., Gentzel I. N., Mackey D., and Alonso A. P. - Metabolomics as an Emerging Tool for the Study of Plant-Pathogen Interactions, Metabolites 10 (2) (2020). https://doi.org/10.3390/metabo10020052
14. Manoj et.al. - Chapter 8-Omics Technology: Role and Futurein Providing Biotic and Abiotic StressTolerance to PlantsA. Sharma (Ed.), Microbes and Signaling Biomolecules Against Plant Stress, Rhizosphere Biology, 2021, https://doi.org/10.1007/978-981-15-7094-0_8
15. Erb M. and Kliebenstein D. J. - Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy, Plant Physiol 184 (1) (2020) 39-52. https://doi.org/10.1104/pp.20.00433
16. Jain A., Sarsaiya S., Wu Q., Lu Y., and Shi J. - A review of plant leaf fungal diseases and its environment speciation, Bioengineered 10 (1) (2019) 409-424. https://doi.org/ 10.1080/21655979.2019.1649520
17. Redkar A., Matei A., and Doehlemann G. - Insights into Host Cell Modulation and Induction of New Cells by the Corn Smut Ustilago maydis, Front Plant Sci. 8 (2017) 899. https://doi.org/10.3389/fpls.2017.00899
18. Strange R. N. and Scott P. R. - Plant disease: a threat to global food security, Annu Rev. Phytopathol 43 (2005) 83116. https://doi.org/10.1146/annurev.phyto.43.113004.1338396
19. Singh R. and Chandrawat K. S. - Role of Phytoalexins in Plant Disease Resistance, International Journal of Current Microbiology and Applied Sciences 6 (1) (2017) 125-129. https://doi.org/10.20546/ijcmas.2017.601.016
20. Lee J., Hilgers F., Loeschke A., Jaeger K. E., and Feldbrugge M. - Ustilago maydis Serves as a Novel Production Host for the Synthesis of Plant and Fungal Sesquiterpenoids, Front Microbiol 11 (2020) 1655. https://doi.org/10.3389/fmicb.2020.01655
21. Mazid M., KhanT.A. and Mohammad F. (2011): Role of secondary metabolites in defense mechanismsof plants. Biology and Medicine3: 232-249.
22. Andersen E. J., Ali S., Byamukama E., Yen Y., and Nepal M. P. - Disease ResistanceMechanisms in Plants, Genes 9 (7) (2018) 339. https://doi.org/10.3390/ genes9070339
23. Ramírez-Gómez S. X. N., Jiménez-García S., Beltrán Campos V., and Lourdes García Campos Ma. - Plant Metabolites in Plant Defense Against Pathogens, Intech Open (2020). doi: 10.5772/intechopen.87958
24. Soares M. B., Pontes-De-Carvalho L., and Ribeiro-Dos-Santos R. - The pathogenesis of Chagas' disease: when autoimmune and parasite-specific immune responses meet, Anais da Academia Brasileira de Ciencias 73 (4) (2001) 547-559. https://doi.org/10.1590/s0001-37652001000400008
25. Xiao Y., Liu H., Wu L., Warburton M., and Yan J. - Genome-wide Association Studies in Maize: Praise and Stargaze, Molecular plant 10 (3) (2017) 359-374. https://doi.org/ 10.1016/j.molp.2016.12.008
26. Schmelz E. A., Kaplan F., Huffaker A., Dafoe N. J., Vaughan M. M., Ni X., Rocca J. R., Alborn H. T., and Teal P. E. - Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize, Proc. Nat. Acad Sci. USA 108 (13) (2011) 5455-5460. https://doi.org/10.1073/pnas.1014714108
27. Huffaker A., Kaplan F., Vaughan M. M., Dafoe N. J., Ni X., Rocca J. R., Alborn H. T., Teal P. E., and Schmelz E. A. - Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize, Plant Physiol 156 (4) (2011) 2082-2097. https://doi.org/10.1104/pp.111.179457
28. Matthews D. E., Lazo G. R., Anderson O. D. - Plant and crop databases, Methods Mol. Biol. 513 (2009) 243-262. doi:10.1007/978-1-59745-427-8_13
29. Horai H., Arita M., Kanaya S., Nihei Y., Ikeda T., Suwa K., Ojima Y., Matsuura F., Soga T., Taguchi R., Saito K., and Nishioka T. - MassBank: a public repository for sharing mass spectral data for life sciences, J. Mass. Spectrom 45 (7) (2010) 703-714. https://doi.org/10.1002/jms.1777
30. Rahman, M., Shaheen, T., Rahman, M., Iqbal, M. A., & Zafar, Y. (2016). Bioinformatics: A Way Forward to Explore “Plant Omics”. InTech. doi: 10.5772/64043
31. Razzaq, A., Sadia, B., Raza, A., Khalid Hameed, M., & Saleem, F. (2019, Dec 14). Metabolomics: A Way Forward for Crop Improvement. Metabolites, 9(12). https://doi.org/10.3390/metabo9120303
32. Kusano M. and Saito K. - Role of Metabolomics in Crop Improvement, Journal of Plant Biochemistry and Biotechnology 21 (S1) (2012) 24-31. https://doi.org/10.1007/s13562-012-0131-4
33. Kumar R., Bohra A., Pandey A. K., Pandey M. K., and Kumar A. - Metabolomics for Plant Improvement: Status and Prospects, Front Plant Sci. 8 (2017) 1302. https://doi.org/10.3389/fpls.2017.01302
34. Dixon R. A., Gang D. R., Charlton A. J., Fiehn O., Kuiper H. A., Reynolds T. L., and Seiber J. N. - Applications of metabolomics in agriculture, Journal of agricultural and food chemistry 54 (24) (2006) 8984-8994.
35. Upadhyay J., Joshi R., Singh B., Bohra A., Vijayan R., Bhatt M., ... and Wani S. H. - Application of bioinformatics in understanding of plant stress tolerance, Plant Bioinformatics: Decoding the Phyta (2017) 347-374.
36. Wishart D. S. - Current progress in computational metabolomics, Brief Bioinform 8 (5) (2007) 279-293. https://doi.org/10.1093/bib/bbm030
37. Srivastava M., Malviya N., and Dandekar T. - Application of Biotechnology and Bioinformatics Tools in Plant–Fungus Interactions, In: Plant Biology and Biotechnology, 2015, pp. 49-64. https://doi.org/10.1007/978-81-322-2283-5_3
38. Orchard S., Ammari M., Aranda B., Breuza L., Briganti L., Iannuccelli M., Jagannathan S., Jimenez Cesareni G., and Hermjakob H. - The MIntAct project--IntAct as a common curation platform for 11 molecular interaction databases, Nucleic Acids Res. 42 (Database issue) (2014) D358-363. https://doi.org/10.1093/nar/gkt1115
39. Licata L., Briganti L., Peluso D., Perfetto L., Iannuccelli M., Galeota E., Sacco F., Palma A., Nardozza A. P., Santonico E., Castagnoli L., and Cesareni G. - MINT, the molecular interaction database: 2012 update, Nucleic Acids Res. 40 (Database issue) (2012) D857-861. https://doi.org/10.1093/nar/gkr930
40. Jeandet P. - Phytoalexins: Current Progress and Future Prospects, Molecules 20 (2) (2015) 2770-2774. https://doi.org/10.3390/molecules20022770
41. Bizuneh G. K. - The chemical diversity and biological activities of phytoalexins, Adv. Tradit Med. (ADTM) 21 (2021) 31-43. https://doi.org/10.1007/s13596-020-00442-w
42. Onaga G. and Wydra K. - Advances in Plant Tolerance to Biotic Stresses, In: Plant Genomics, 2016. https://doi.org/10.5772/64351
43. Jeandet P., Hébrard C., Deville M. A., Cordelier S., Dorey S., Aziz A., and Crouzet J. - Deciphering the role of phytoalexins in plant-microorganism interactions and human health, Molecules, Basel, Switzerland, 19 (11) (2014) 18033-18056. https://doi.org/ 10.3390/molecules191118033
44. Ejike C. E. C. C., Gong M., and Udenigwe C. C. - Phytoalexins from the Poaceae: Biosynthesis, function and prospects in food preservation, Food Research International 52 (1) (2013) 167-177. https://doi.org/10.1016/j.foodres.2013.03.012
45. Zaynab M., Fatima M., Abbas S., Sharif Y., Umair M., Zafar M. H., and Bahadar K. - Role of secondary metabolites in plant defense against pathogens, Microb Pathog 124 (2018) 198-202. https://doi.org/10.1016/j.micpath.2018.08.034
46. Cruickshank I. A. M. and Perrin D. R. - Isolation of a phytoalexin from Pisum sativum L, Nature 187 (1960) 799-800.
47. Anna K., Jager S. H. F. - Correlation between Plant Secondary Metabolites and Their Antifungal Mechanisms A Review, Medicinal & Aromatic Plants 03 (02) (2014). https://doi.org/10.4172/2167-0412.1000154
48. Arruda R. L., Paz A. T. S., Bara M. T. F., Côrtes M. V. D. C. B., Filippi M. C. C. D., and Conceição E. C. D. - An approach on phytoalexins: function, characterization and biosynthesis in plants of the family Poaceae, Ciência Rural 46 (2016) 1206-1216.
49. Huffaker A., Kaplan F., Vaughan M. M., Dafoe N. J., Ni X., Rocca J. R., Alborn H. T., Teal P. E., and Schmelz E. A. - Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize, Plant Physiol 156 (4) (2011) 2082-2097. https://doi.org/10.1104/pp.111.179457
50. Lambarey H., Moola N., Veenstra A., Murray S., and Suhail Rafudeen M. - Transcriptomic Analysis of a Susceptible African Maize Line to Fusarium verticillioides Infection, Plants (Basel) 9 (9) (2020). https://doi.org/10.3390/plants9091112
51. Xu M., Wilderman P. R., Morrone D., Xu J., Roy A., Margis-Pinheiro M., Upadhyaya N. M., Coates R. M., and Peters R. J. - Functional characterization of the rice kaurene synthase-like gene family, Phytochemistry 68 (3) (2007) 312-326. https://doi.org/ 10.1016/j.phytochem.2006.10.016
52. Poloni A. and Schirawski J. - Red card for pathogens: phytoalexins in sorghum and maize, Molecules 19 (7) (2014) 9114-9133. https://doi.org/10.3390/molecules19079114
53. Schnee C., Kollner T. G., Held M., Turlings T. C., Gershenzon J., and Degenhardt J. - The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores, Proc. Natl. Acad. Sci. USA 103 (4) (2006) 1129-1134. https://doi.org/10.1073/pnas.0508027103
54. Mao H., Liu J., Ren F., Peters R. J., and Wang Q. - Characterization of CYP71Z18 indicates a role in maize zealexin biosynthesis, Phytochemistry 121 (2016) 4-10. https://doi.org/10.1016/j.phytochem.2015.10.003
55. Peters R. J. - Uncovering the complex metabolic network underlying diterpenoid phytoalexin biosynthesis in rice and other cereal crop plants, Phytochemistry 67 (21) (2006) 2307-2317. https://doi.org/10.1016/j.phytochem.2006.08.009
56. Schmelz E. A., Kaplan F., Huffaker A., Dafoe N. J., Vaughan M. M., Ni X., Rocca J. R., Alborn H. T., and Teal P. E. - Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize, Proceedings of the National Academy of Sciences of the United States of America 108 (13) (2011) 5455-5460. https://doi.org/10.1073/pnas.1014714108
57. Ding Y., Weckwerth P. R., Poretsky E., Murphy K. M., Sims J., Saldivar E., ... and Huffaker A. - Genetic elucidation of interconnected antibiotic pathways mediating maize innate immunity, Nature plants 6 (11) (2020) 1375-1388.
58. Christensen S. A., Huffaker A., Sims J., Hunter C. T., Block A., Vaughan M. M., Willett D., Romero M., Mylroie J. E., Williams W. P., and Schmelz E. A. - Fungal and herbivore elicitation of the novel maize sesquiterpenoid, zealexin A4, is attenuated by elevated CO2, Planta 247 (4) (2018b) 863-873. https://doi.org/10.1007/s00425-017-2830-5
59. Block A. K., Vaughan M. M., Schmelz E. A., and Christensen S. A. - Biosynthesis and function of terpenoid defense compounds in maize (Zea mays), Planta 249 (2019) 21-30.
Meyer J., Berger D. K., Christensen S. A., and Murray S. L. - RNA-Seq analysis of resistant and susceptible sub-tropical maize lines reveals a role for kauralexins in resistance to grey leaf spot disease, caused by Cercospora zeina, BMC Plant Biol. 17 (1) (2017) 197. https://doi.org/10.1186/s12870-017-1137-9
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Vietnam Journal of Sciences and Technology (VJST) is an open access and peer-reviewed journal. All academic publications could be made free to read and downloaded for everyone. In addition, articles are published under term of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) Licence which permits use, distribution and reproduction in any medium, provided the original work is properly cited & ShareAlike terms followed.
Copyright on any research article published in VJST is retained by the respective author(s), without restrictions. Authors grant VAST Journals System a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to VJST either via VJST journal portal or other channel to publish their research work in VJST agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJST.
Authors have the responsibility of to secure all necessary copyright permissions for the use of 3rd-party materials in their manuscript.