Vol. 29 No. 3SI (2019)
Papers

Mott Transition in the Mass Imbalanced Ionic Hubbard Model at Half Filling

Nguyen Thi Hai Yen
Institute of Physics, Vietnam Academy of Science and Technology (VAST)
Le Duc Anh
Hanoi National University of Education
Hoang Anh Tuan
Institute of Physics, Vietnam Academy of Science and Technology (VAST) and Graduate University of Science and Technology, VAST
Nguyen Toan Thang
Institute of Physics, Vietnam Academy of Science and Technology
Nguyen Thi Huong
Thuy loi University

Published 22-10-2019

How to Cite

Yen, N. T. H., Anh, L. D., Tuan, H. A., Thang, N. T., & Huong, N. T. (2019). Mott Transition in the Mass Imbalanced Ionic Hubbard Model at Half Filling. Communications in Physics, 29(3SI), 305. https://doi.org/10.15625/0868-3166/29/3SI/14265

Abstract

The Mott - Hubbard metal - insulator transition in the half-filled mass imbalanced ionic Hubbard model is investigated using the two-site dynamical mean field theory. We find that for a fixed mass imbalanced parameter r the critical interaction Uc increases when the ionic energy \(\Delta\) is increased. In the other hand, for a fixed \(\Delta\), \(U_c\) decreases with increasing the mass imbalance. We also show the existence of BI phase in the system for the case \(\Delta \ne 0\), \(U=0\) and calculate the staggered charge density \(n_B − n_A\) as a function of the interaction for different values of the mass imbalance. Our results in the limiting cases (\(r = 1\); \(\Delta \ne 0\) or/and \(\Delta = 0\); \(r\ne 1\)) are in good agreement with those obtained from full dynamical mean field theory.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen, and U. Sen, Adv. Phys. 56 (2007) 243.
  2. I. Bloch et al.,, Rev. Mod. Phys. 80 (2008) 885.
  3. C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod. Phys. 82 (2010) 1225.
  4. W. Hofstetter, J. I. Cirac, P. Zoller, E. Demler, and M. D. Lukin, Phys. Rev. Lett. 89 (2002) 220407.
  5. R. J ̈ordens, N. Strohmaier, K. Gu ̈nter, H. Moritz, and T. Esslinger, Nature 455 (2008) 204.
  6. T. Esslinger, Annu. Rev. Condens. Matter Phys. 1 (2010) 129.
  7. A. Hemmerich, D. Schropp, and T. W. H ̈ansch, Phys. Rev. A 44 (1991) 1910.
  8. S. Taie, Y. Takasu, S. Sugawa, R. Yamazaki, T. Tsujimoto, R. Murakami, and Y. Takahashi, Phys.
  9. Rev. Lett. 105 (2010) 190401.
  10. A. Trenkwalder, C. Kohstall, M. Zaccanti, D. Naik, A. I.Sidorov, F. Schreck, and R. Grimm, Phys.
  11. Rev. Lett. 106 (2011) 115304.
  12. C. Kohstall, M. Zaccanti, M. Jag, A. Trenkwalder, P. Massignan, G. M. Bruun, F. Schreck, and R.
  13. Grimm, Nature (London), 485 (2013) 615.
  14. M. Jag, M. Zaccanti, M. Cetina, R. S. Lous, F. Schreck, R.Grimm, D. S. Petrov, and J. Levinsen,
  15. Phys. Rev. Lett. 112 (2014) 075302.
  16. P. Fazekas, Electron Correlation and Magnetism (World Scientific, Singapore, 1999).
  17. P. S. Riseborough and J. M. Lawrence, Rep. Prog. Phys. 79 (2016) 084501.
  18. M. Potthoff, Phys. Rev. B 64 (2001) 165114.
  19. E.A. Winograd, R. Chitra, M.J. Rozenberg Phys. Rev. B 84 (2011) 233102.
  20. T.L. Dao et al.,, Phys. Rev. A 85 (2012) 013606.
  21. Anh-Tuan Hoang, Duc-Anh Le, Physica B 485 (2016) 121.
  22. L. Craco et al., Phys. Rev. B 78 (2008) 075121.
  23. A. Garg et al., Phys. Rev. Lett. 97 (2006) 046403.
  24. .