Vol. 23 No. 1 (2013)
Papers

Mott Transition of the Half-filled Hubbard Model in a Two-dimensional Frustrated Lattice

Hoang Anh Tuan
Institute of Physics, VAST
Le Duc Anh
Department of Physics, Hanoi National University of Education

Published 10-04-2013

Keywords

  • Mott-insulator,
  • Hubbard model,
  • geometrical frustration,
  • coherent potential approximation

How to Cite

Tuan, H. A., & Anh, L. D. (2013). Mott Transition of the Half-filled Hubbard Model in a Two-dimensional Frustrated Lattice. Communications in Physics, 23(1), 49. https://doi.org/10.15625/0868-3166/23/1/538

Abstract

Using coherent potential approximation we study zero-temperature Mott transition of the half-filled Hubbard model

in a two-dimensional square lattice with geometrical frustration. It turns out that the geometrical frustration reduces the gap between the Hubbard bands. As a result the metallic phase is stabilized up to a fairly large value of the on-site Coulomb interaction. We found that the critical value $U_C$ for the Mott transition is enhanced by the geometrical frustration. Our results are in good agreement with the ones obtained by the single-site dynamical mean-field theory.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. P. Fulde, J. Phys.: Condens. Matter 16 (2004) S591.
  2. J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, Rev. Mod. Phys. 82
  3. (2010) 53.
  4. S. Kondo et al., Phys. Rev. Lett. 78 (1997) 3729.
  5. D. C. Johnston, J. Low. Temp. Phys. 25 (1976) 145.
  6. T. Ohashi, T. Momoi, H. Tsunetsugu, and N. Kawakami, Phys. Rev. Lett.
  7. (2008) 076402.
  8. N. Bulut, W. Koshibae, and S. Maekawa, Phys. Rev. B68 (2003) 195103.
  9. N. Bulut, W. Koshibae, and S. Maekawa, Phys. Rev. Lett. 95 (2005)
  10. B. H. Bernhard, B. Canals, and C Lacroix, J. Phys.: Condens. Matter 19
  11. (2007) 145258.
  12. T. Ohashi, T. Momoi, H. Tsunetsugu, N. Kawakami, Prog. Ther. Phys.
  13. Suppl. bf 176 (2008) 97.
  14. S. Fujimoto, Phys. Rev. B64 (2001) 085102.
  15. T. Yoshioka, A. Koga, and N. Kawakami, J. Phys. Soc. Jpn. 77 (2008)
  16. A. Kogaa, T. Yoshiokaa, N. Kawakamia, H. Yokoyamab, Physica C 460
  17. (2007) 1070.
  18. O. Parcollet, G. Biroli, and G. Kotliar, Phys. Rev. Lett. 92 (2004) 226402.
  19. B. Velicky, S. Kirkpatrick, and H. Ehrenreich, Phys. Rev. 175 (1968) 745.
  20. F. Brouers, M. Cyrot, and F. Cyrot-Lackmann, Phys. Rev. B7 (1973)
  21. F. Ducastelle, J. Phys. C: Solid State Phys. 7 (1974) 1795.
  22. A. Georges, G. Kotliar,W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys.
  23. (1996) 13.
  24. M. Rozenberg, R. Chitra, and G. Kotliar, Phys. Rev. Lett 83 (1999) 3498.
  25. T. Ohashi, N. Kawakami, and H. Tsunetsugu, Phys. Rev. Lett 97 (2006) 066401.