Vol. 29 No. 2 (2019)
Papers

Magnetic Order in Heisenberg Models on Non-Bravais Lattice: Popov-Fedotov Functional Method

Pham Thi Thanh Nga
Thuy loi University, 175 Tay Son, Hanoi
Nguyen Toan Thang
Institute of Physics, VAST

Published 14-05-2019

Keywords

  • Popov - Fedotov trick,
  • functional integral,
  • Heisenberg model,
  • non-Bravais lattice

How to Cite

Nga, P. T. T., & Thang, N. T. (2019). Magnetic Order in Heisenberg Models on Non-Bravais Lattice: Popov-Fedotov Functional Method. Communications in Physics, 29(2), 119. https://doi.org/10.15625/0868-3166/29/2/13508

Abstract

We study magnetic properties of ordered phase in Heisenberg model on a non-Bravais lattice by means of Popov - Fedotov trick, which takes into account a rigorous constraint of a single occupancy. We derive magnetization and free energy using sadle point approximation in the functional integral formalism. We illustrate the application of the Popov -- Fedotov approach to the Heisenberg antiferromagnet on a honeycomb lattice.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. A. Auerbach, Interacting electrons and quantum magnetism, Springer Verlag (1994)
  2. Yu.A. Izyumov and Y.N. Skryabin, Statistical Mechanics of Magnetically Ordered Systems, Springer Verlag (1988)
  3. E. Fradkin, Field theories of condensed matter systems, Addison-Wesley Publishing Company (1991)
  4. D.P. Arovas and A. Auerbach, Phys. Rev B 38, p.316 (1988)
  5. V.N. Popov and S. A. Fedotov, Sov. Phys. JETP 67 535 (1988)
  6. O.Veits, et al, J. France 4 493 (1994)
  7. M.N. Kicelev, Int. J. Mod. Phys B 20 381 (2006)
  8. S.A. Kulagin et al, Phys. Rev. Lett. 110 070601 (2013)
  9. N.V.Prokof’ev and B. Svistunov, Phys. Rev. B 84 073102 (2011)
  10. J. Carlstrom, J. Phys.: Condens. Matter 29 385602 (2017)
  11. S. Tejima and A. Oguchi, J. Phys. Soc. Jpn. 64 4923 (1995)
  12. S. Azakov et al, Int. J. Mod. Phys. B 14 13 (2000)
  13. R. Dillenschneider and J. Richert, Eur. Phys. J. B 49 187 (2006)
  14. Pham Thi Thanh Nga and Nguyen Toan Thang, Comm. in Phys. 22 33 (2012); Comm. in Phys. 22 383 Erratum (2012)
  15. J. Stein and R. Oppermann, Phys. Rev. B 46 8409 (1992)
  16. M. Bechmann and R. Oppermann, Eur. Rev. B 41 525 (2004)
  17. M.N. Kiselev and R. Oppermann, Sov. Phys. JETP Letters 71 250 (2000)
  18. H. T. Diep (Ed.), Frustrated Spin Systems, 2nd ed. World Scientific, Singapore, 2013
  19. R. F. Bishop et al, Phys. Rev. B 82 024416 (2010)
  20. R. F. Bishop et al, Phys. Rev. B 88 214418 (2013)
  21. P.H. Li et al, J. Phys: Conf. Series 529 012008 (2014)
  22. P.H. Li et al, Phys. Rev. B 88 144423 (2013)
  23. S.S. Pershoguba et al, Phys. Rev. X 8 011010 (2018)
  24. J. Fransson et al, Phys. Rev. B 94 075401 (2016)
  25. S.A. Owerre, J. Phys.: Condens. Matter 30 245803 (2018)
  26. S.J. Miyake, J. Phys. Soc. Jpn. 91 938 (1992)